Question
upstudy study bank question image url

1. Matritsaning rangini toping: \[ A=\left(\begin{array}{cccccc} 1 & 7 & 5 & 8 & 9 & 2 \\ 3 & 21 & 15 & 24 & 27 & 6 \\ 2 & 14 & 10 & 16 & 18 & 4 \end{array}\right) \] 2. Determinantni hisoblang: \[ \left|\begin{array}{rrr} 1 & 2 & -1 \\ 3 & 7 & 2 \\ 2 & 3 & -7 \end{array}\right| \] 3. Chiziqli algebraik tenglamalar sistemasining ildizini toping: \[ \begin{array}{l} x+2 y+3 z=0 \\ 2 x+4 y+5 z=-1 \\ 3 x+5 y+6 z=1 \end{array} \]

Ask by Bond Johnston. in Russia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

1. **Matritsaning rangi:** 1 2. **Determinantni hisoblash:** 0 3. **Tenglamalar sistemasining ildizi:** \( x = 5 \), \( y = -4 \), \( z = 1 \)

Solution

1. **Matritsaning rangini topish** Matritsa \( A \) quyidagicha berilgan: \[ A = \begin{pmatrix} 1 & 7 & 5 & 8 & 9 & 2 \\ 3 & 21 & 15 & 24 & 27 & 6 \\ 2 & 14 & 10 & 16 & 18 & 4 \end{pmatrix} \] Matritsaning rangini topish uchun uni qatorlar bo'yicha tartibga solamiz va qayerda qatorlar bir-biriga bog'liq ekanligini aniqlaymiz. **Qadamlar:** 1. **Qator 2 ni tekshirish:** \[ \text{Qator 2} = 3 \times \text{Qator 1} = 3 \times (1, 7, 5, 8, 9, 2) = (3, 21, 15, 24, 27, 6) \] Demak, Qator 2 Qator 1 ning uch baravaridir. 2. **Qator 3 ni tekshirish:** \[ \text{Qator 3} = 2 \times \text{Qator 1} = 2 \times (1, 7, 5, 8, 9, 2) = (2, 14, 10, 16, 18, 4) \] Demak, Qator 3 ham Qator 1 ning ikkinchi baravaridir. **Natija:** Barcha qatorlar Qator 1 ning ko'paytmalari bo'lgani uchun matritsaning rangі 1 ga teng. **Demak, matritsaning rangi:** \( \boxed{1} \) 2. **Determinantni hisoblash** Berilgan determinant: \[ \left|\begin{array}{rrr} 1 & 2 & -1 \\ 3 & 7 & 2 \\ 2 & 3 & -7 \end{array}\right| \] 3x3 determinantini hisoblash formulasi: \[ \det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] Bu yerda: \[ \begin{aligned} a &= 1, & b &= 2, & c &= -1, \\ d &= 3, & e &= 7, & f &= 2, \\ g &= 2, & h &= 3, & i &= -7. \end{aligned} \] **Hisoblash:** \[ \begin{aligned} \det(A) &= 1 \times (7 \times (-7) - 2 \times 3) - 2 \times (3 \times (-7) - 2 \times 2) + (-1) \times (3 \times 3 - 7 \times 2) \\ &= 1 \times (-49 - 6) - 2 \times (-21 - 4) + (-1) \times (9 - 14) \\ &= 1 \times (-55) - 2 \times (-25) + (-1) \times (-5) \\ &= -55 + 50 + 5 \\ &= 0 \end{aligned} \] **Demak, determinanti:** \( \boxed{0} \) 3. **Chiziqli algebraik tenglamalar sistemasining ildizini topish** Berilgan tenglamalar: \[ \begin{cases} x + 2y + 3z = 0 \\ 2x + 4y + 5z = -1 \\ 3x + 5y + 6z = 1 \end{cases} \] **Avval, kengaytirilgan matritsani tuzamiz:** \[ \begin{pmatrix} 1 & 2 & 3 & | & 0 \\ 2 & 4 & 5 & | & -1 \\ 3 & 5 & 6 & | & 1 \end{pmatrix} \] **Qadamlar:** 1. **Qator 2 dan Qator 1 ni olib chiqamiz:** \[ \text{Q2}' = \text{Q2} - 2 \times \text{Q1} = (2-2, 4-4, 5-6 | -1-0) = (0, 0, -1 | -1) \] 2. **Qator 3 dan Qator 1 ni olib chiqamiz:** \[ \text{Q3}' = \text{Q3} - 3 \times \text{Q1} = (3-3, 5-6, 6-9 | 1-0) = (0, -1, -3 | 1) \] Matritsa endi: \[ \begin{pmatrix} 1 & 2 & 3 & | & 0 \\ 0 & 0 & -1 & | & -1 \\ 0 & -1 & -3 & | & 1 \end{pmatrix} \] 3. **Qatorlarni almashtiramiz:** \[ \text{Q2} \leftrightarrow \text{Q3} \] Natija: \[ \begin{pmatrix} 1 & 2 & 3 & | & 0 \\ 0 & -1 & -3 & | & 1 \\ 0 & 0 & -1 & | & -1 \end{pmatrix} \] 4. **Orqaga almashtirish yordamida yechimni topamiz:** - **Q3:** \(-1z = -1 \) ⇒ \( z = 1 \) - **Q2:** \(-y - 3z = 1 \) ⇒ \(-y - 3(1) = 1 \) ⇒ \(-y = 4 \) ⇒ \( y = -4 \) - **Q1:** \( x + 2y + 3z = 0 \) ⇒ \( x + 2(-4) + 3(1) = 0 \) ⇒ \( x - 8 + 3 = 0 \) ⇒ \( x = 5 \) **Natija:** \[ x = 5, \quad y = -4, \quad z = 1 \] **Demak, tenglamalar sistemasining yechimi:** \( \boxed{(x, y, z) = (5, -4, 1)} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Birinchidan, berilgan matritsaning rangini topish uchun, avval matritsaning qatorlarini yoki ustunlarini boshqalar bilan almashirib, Gauss bo'linish usuli orqali sodda ko'rinishga keltirish mumkin. Bu jarayonda nol qatorlar sonini aniqlaymiz va ularning umumiy sonini topamiz. Bu ishni tugatgach, rang bir xil bo'ladi va ushbu matritsaning rangini 3 deb belgilash mumkin, chunki faqat uchta liney qatorlar saqlanadi. Ikkinchidan, berilgan determinantni hisoblash uchun, 3x3 matritsaning determinantini qo'llanilishi mumkin. Buni misol qilib, Laplace kengayishini yoki haftasi uchun Sarrus qoidasi orqali hisoblash mumkin. 3x3 matritsaning determinantini hisoblash jarayonida, biror qatorni tanlaymiz va har bir elementdan u bilan bog'liq minorani ko'paytiramiz. Ushbu misol uchun, natija 6 ga teng bo'ladi.

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy