Responder
1. **Matritsaning rangi:** 1
2. **Determinantni hisoblash:** 0
3. **Tenglamalar sistemasining ildizi:** \( x = 5 \), \( y = -4 \), \( z = 1 \)
Solución
1. **Matritsaning rangini topish**
Matritsa \( A \) quyidagicha berilgan:
\[
A = \begin{pmatrix}
1 & 7 & 5 & 8 & 9 & 2 \\
3 & 21 & 15 & 24 & 27 & 6 \\
2 & 14 & 10 & 16 & 18 & 4
\end{pmatrix}
\]
Matritsaning rangini topish uchun uni qatorlar bo'yicha tartibga solamiz va qayerda qatorlar bir-biriga bog'liq ekanligini aniqlaymiz.
**Qadamlar:**
1. **Qator 2 ni tekshirish:**
\[
\text{Qator 2} = 3 \times \text{Qator 1} = 3 \times (1, 7, 5, 8, 9, 2) = (3, 21, 15, 24, 27, 6)
\]
Demak, Qator 2 Qator 1 ning uch baravaridir.
2. **Qator 3 ni tekshirish:**
\[
\text{Qator 3} = 2 \times \text{Qator 1} = 2 \times (1, 7, 5, 8, 9, 2) = (2, 14, 10, 16, 18, 4)
\]
Demak, Qator 3 ham Qator 1 ning ikkinchi baravaridir.
**Natija:**
Barcha qatorlar Qator 1 ning ko'paytmalari bo'lgani uchun matritsaning rangі 1 ga teng.
**Demak, matritsaning rangi:** \( \boxed{1} \)
2. **Determinantni hisoblash**
Berilgan determinant:
\[
\left|\begin{array}{rrr}
1 & 2 & -1 \\
3 & 7 & 2 \\
2 & 3 & -7
\end{array}\right|
\]
3x3 determinantini hisoblash formulasi:
\[
\det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)
\]
Bu yerda:
\[
\begin{aligned}
a &= 1, & b &= 2, & c &= -1, \\
d &= 3, & e &= 7, & f &= 2, \\
g &= 2, & h &= 3, & i &= -7.
\end{aligned}
\]
**Hisoblash:**
\[
\begin{aligned}
\det(A) &= 1 \times (7 \times (-7) - 2 \times 3) - 2 \times (3 \times (-7) - 2 \times 2) + (-1) \times (3 \times 3 - 7 \times 2) \\
&= 1 \times (-49 - 6) - 2 \times (-21 - 4) + (-1) \times (9 - 14) \\
&= 1 \times (-55) - 2 \times (-25) + (-1) \times (-5) \\
&= -55 + 50 + 5 \\
&= 0
\end{aligned}
\]
**Demak, determinanti:** \( \boxed{0} \)
3. **Chiziqli algebraik tenglamalar sistemasining ildizini topish**
Berilgan tenglamalar:
\[
\begin{cases}
x + 2y + 3z = 0 \\
2x + 4y + 5z = -1 \\
3x + 5y + 6z = 1
\end{cases}
\]
**Avval, kengaytirilgan matritsani tuzamiz:**
\[
\begin{pmatrix}
1 & 2 & 3 & | & 0 \\
2 & 4 & 5 & | & -1 \\
3 & 5 & 6 & | & 1
\end{pmatrix}
\]
**Qadamlar:**
1. **Qator 2 dan Qator 1 ni olib chiqamiz:**
\[
\text{Q2}' = \text{Q2} - 2 \times \text{Q1} = (2-2, 4-4, 5-6 | -1-0) = (0, 0, -1 | -1)
\]
2. **Qator 3 dan Qator 1 ni olib chiqamiz:**
\[
\text{Q3}' = \text{Q3} - 3 \times \text{Q1} = (3-3, 5-6, 6-9 | 1-0) = (0, -1, -3 | 1)
\]
Matritsa endi:
\[
\begin{pmatrix}
1 & 2 & 3 & | & 0 \\
0 & 0 & -1 & | & -1 \\
0 & -1 & -3 & | & 1
\end{pmatrix}
\]
3. **Qatorlarni almashtiramiz:**
\[
\text{Q2} \leftrightarrow \text{Q3}
\]
Natija:
\[
\begin{pmatrix}
1 & 2 & 3 & | & 0 \\
0 & -1 & -3 & | & 1 \\
0 & 0 & -1 & | & -1
\end{pmatrix}
\]
4. **Orqaga almashtirish yordamida yechimni topamiz:**
- **Q3:** \(-1z = -1 \) ⇒ \( z = 1 \)
- **Q2:** \(-y - 3z = 1 \) ⇒ \(-y - 3(1) = 1 \) ⇒ \(-y = 4 \) ⇒ \( y = -4 \)
- **Q1:** \( x + 2y + 3z = 0 \) ⇒ \( x + 2(-4) + 3(1) = 0 \) ⇒ \( x - 8 + 3 = 0 \) ⇒ \( x = 5 \)
**Natija:**
\[
x = 5, \quad y = -4, \quad z = 1
\]
**Demak, tenglamalar sistemasining yechimi:** \( \boxed{(x, y, z) = (5, -4, 1)} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución