Turner Sullivan
06/02/2023 · Senior High School

Esercizio 13.5 Si consideri l'applicazione \( F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2} \) tale che \[ F(x, y, z)=(x-y, z) . \] Determinare la controimmagine di \( (2,2) \) sotto l'azione di \( F \). (i) Determinare una base e la dimensione di \( \operatorname{Im} F \) e di Ker \( F \). (ii) Calcolare la dimensione dell'immagine del sottospazio \( U=\mathcal{L}((1,0,0),(0,2,0) \). Svolgimento \( \{(2+t, t, 2) \mid t \in \mathbb{R}\} \). Risolvendo il relativo sistema si trovano infinite soluzioni date da

Upstudy ThothAI Solution

Tutor-Verified Answer

Quick Answer

**Soluzione** Consideriamo l'applicazione lineare \( F: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2} \) definita da \[ F(x, y, z) = (x - y, z). \] ### (i) Determinare una base e la dimensione di \( \operatorname{Im} F \) e di \( \ker F \). **Immagine di \( F \) (\( \operatorname{Im} F \)):** \[ \operatorname{Im} F = \{ (x - y, z) \mid x, y, z \in \mathbb{R} \} = \mathbb{R}^2. \] Base: \( \{ (1, 0), (0, 1) \} \) Dimensione: 2 **Nucleo di \( F \) (\( \ker F \)):** \[ \ker F = \{ (x, y, z) \in \mathbb{R}^3 \mid x - y = 0 \text{ e } z = 0 \} = \{ y(1, 1, 0) \mid y \in \mathbb{R} \}. \] Base: \( \{ (1, 1, 0) \} \) Dimensione: 1 ### (ii) Calcolare la dimensione dell'immagine del sottospazio \( U = \mathcal{L} \{ (1, 0, 0), (0, 2, 0) \} \). **Sottospazio \( U \):** \[ U = \{ y(1, 0, 0) + z(0, 2, 0) \mid y, z \in \mathbb{R} \}. \] Dimensione: 2 **Immagine di \( U \) attraverso \( F \):** \[ F(U) = \{ F(y(1, 0, 0)) + F(z(0, 2, 0)) \} = \{ (y, 0) + (-2z, 0) \} = \{ (y - 2z, 0) \mid y, z \in \mathbb{R} \}. \] Dimensione: 1 **Riassunto:** - **Immagine di \( F \):** Base \( \{ (1, 0), (0, 1) \} \), Dimensione 2 - **Nucleo di \( F \):** Base \( \{ (1, 1, 0) \} \), Dimensione 1 - **Immagine di \( U \) attraverso \( F \):** Dimensione 1

Step-by-step Solution

Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions