Burns Perkins
01/19/2024 · High School
soit \( x \in \mathbb{R}^{+} \): On pose \[ A=\sqrt{x^{2}+1}-x \text { et } B=\sqrt{x^{2}+1}+x . \] 1. [1 pt] Montrer que : \( A>0 \) et déduire que : \( B>2 x \). 2. [1 pt] Calculer \( A B \) et déduire que : \( A<\frac{1}{2 x} \) pour \( x \neq 0 \). 3. [1 pt]Démontrer que pour tout \( x \neq 0: \quad x<\sqrt{x^{2}+1}<x+\frac{1}{2 x} \). 4. \( \left[1 \mathrm{pt}\right. \) ] Donner un encadrement d'amplitude \( \frac{1}{66} \) pour le nombre \( \frac{\sqrt{122}}{3} \). Exercice \( 4 ; 3.5 \) POINTS.
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
**Risposte:**
1. **Mostrare che \( A > 0 \) e \( B > 2x \):**
- Poiché \( x \) è un numero reale positivo, \( \sqrt{x^{2}+1} \) è maggiore di \( x \), quindi \( A = \sqrt{x^{2}+1} - x > 0 \).
- Inoltre, \( B = \sqrt{x^{2}+1} + x > x + x = 2x \).
2. **Calcolare \( AB \) e dedurre \( A < \frac{1}{2x} \):**
- \( AB = (\sqrt{x^{2}+1} - x)(\sqrt{x^{2}+1} + x) = 1 \).
- Poiché \( B > 2x \), allora \( A = \frac{1}{B} < \frac{1}{2x} \).
3. **Dimostrare che \( x < \sqrt{x^{2}+1} < x + \frac{1}{2x} \):**
- Dalla parte 1, \( \sqrt{x^{2}+1} > x \).
- Dalla parte 2, \( \sqrt{x^{2}+1} = x + A \) con \( A < \frac{1}{2x} \).
- Pertanto, \( x < \sqrt{x^{2}+1} < x + \frac{1}{2x} \).
4. **Inquadrare \( \frac{\sqrt{122}}{3} \) con ampiezza \( \frac{1}{66} \):**
- \( \sqrt{122} \approx 11.0454 \), quindi \( \frac{\sqrt{122}}{3} \approx 3.6818 \).
- Un intervallo con ampiezza \( \frac{1}{66} \approx 0.01515 \) è \( [3.6742, \ 3.6894] \).
- Quindi, \( 3.674 \leq \frac{\sqrt{122}}{3} \leq 3.689 \).
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit