Q:
13 Permudahkan/ Simplify
\[ \begin{array}{ll}\frac{q^{3} \times\left(q^{10} r^{2}\right)^{2}}{\left(\sqrt[3]{125} q^{6} r^{2}\right)^{5}} \div \frac{(q r)^{-15}}{\left(50 q^{2} r^{4}\right)^{\frac{1}{2}}} \\ \begin{array}{ll}\text { A } \frac{\sqrt{2}}{5^{2}} q^{3} r^{9} & \text { C } \frac{\sqrt{2}}{5^{5}} q^{3} r^{9} \\ \text { B } \frac{\sqrt{2}}{25} q^{-3} r^{-9} & \text { D } \frac{25}{\sqrt{2}} q^{3} r^{9}\end{array}\end{array} \$ \]
Q:
\( 2.1 .2 \quad 2 x ^ { 2 } - 5 x + 2 = 0 \)
Q:
1.6 Indien \( \frac{3}{2} \) een wortel van die vergelyking \( b x^{2}-x=3 \) is, bepaal \( b \)
en die ander wortel.
Q:
Hallar la solucion de las sig. ecuaciones.
\( x^{3}+5 x^{2}+6 x=0 \)
\( 3 x^{2}+12=0 \)
\( x^{3}-8 x^{2}+21 x-20=0 \)
\( x^{2}+25=0 \)
\( x^{4}+4 x^{3}+28 x^{2}-4 x-29=0 \)
\( x^{4}+3 x^{2}-10=0 \)
\( x^{4}+2 x^{2}+1=0 \)
\( x^{6}-9 x^{3}+8=0 \)
\( 2 x^{2}-x+3=0 \)
Q:
Graph the function.
\[ g(x)=-2 x^{2}+1 \]
Q:
(1) \( \begin{aligned}-0.65 x+0.35 x & =8.7 \\ 21 & =8.7\end{aligned} \)
Q:
2.2 Express the following in partial fractions
2.2.1 \( \frac{5 x-3}{x^{2}-3 x-4} \)
2.2.2 \( \frac{7 x-11}{(x-2)^{2}} \)
Q:
Solve for \( x \) in each:
\( \begin{array}{l}1.1 \\ (x-1)^{2}=\sqrt{16} \\ 1.2 \quad 3 x^{2}-5 x=14 \text { (correct to two decimal places) } \\ 1.3 \quad x-2=\sqrt{8-x} \\ 1.4 \quad x^{2}+5 x<-6 \\ 1.5 \quad(\sqrt{81})^{x+1}=81^{2 x} \\ 1.6 \quad \text { If } \frac{3}{2} \text { is one root of the equation } b x^{2}-x=3 \text {, determine } b \text { and the other root. }\end{array} \) (3) (4)
Q:
\begin{tabular}{r|l} & \( \begin{array}{l}\text { The system has no solution. } \\ \text { System } \mathrm{B}\end{array} \) \\ \( \begin{aligned}-3 x+y=3 \\ 3 x-y=3\end{aligned} \) & \( \begin{array}{l} \text { The system has a unique solution: } \\ \text { The system has infinitely many solutions. } \\ \text { They must satisfy the following equation: } \\ y=\square\end{array} \)\end{tabular}
Q:
в) \( \sqrt{x}=7 \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit