Q:
8. The population of a community (in millions) can be approximated by
\( p(t)=38.3 e^{x \ln 1.024} \), where \( t \) is years after 2000 .
a. What is the estimated population for the year 2030 ?
78.018 Million of people
Q:
Calcular los valores que toman las funciones \( y=3^{x} \)
\( y y=2^{x} \), para \( x=-3,-2,-1,0,1 \) y 2 . Elaborar
una tabla de valores \( y \) representar sobre un mismo
plano cartesiano las dos funciones.
¿Qué tienen en común las gráficas de las funciones
\( y=2^{x} y y=3^{x} \) ?
Q:
Find the domain and range of \( y=f(x)=\frac{1}{\sqrt{4-x^{2}}} \)
Q:
Sketch the groph of the
following ratonal function
and stche heir property
a. \( f(x)=\frac{x^{3}-1}{x^{2}-3 x+2} \)
b. \( f(x)=\frac{x^{2}}{x^{2}+1} \)
Q:
QUESTION 7
Given: \( f(x)=\frac{2}{x+4}-1 \)
7.1 Write down the equation of the asymptotes of \( f \).
7.2 Calculate the intercepts of the graph of \( f \) with the axes.
7.3 Sketch the graph of \( f \), showing clearly the asymptotes and intercepts with the
axes.
7.4 Write down the coordinates of the image of the \( x \)-intercept if it is reflected about
the axis of symmetry \( y=-x-5 \).
7.5 Write down the range of \( y=-f(x) \).
Describe in words, the transformation of \( f \) to \( g \) if \( g(x)=\frac{-2}{x-4}-1 \).
Q:
5. Trazar las gráficas de las siguientes funciones, determinando dominio \( y \)
\( \begin{array}{llll}\text { a. } F(x)=x^{2}-2 x & \text { b. } F(x)=-x^{2}-2 x & \text { c. } F(x)=x^{2}-2 x+2 & \text { d. } f(x)=\sqrt{x^{2}-2 x} \\ \text { e. } f(x)=\sqrt{-x^{2}-2 x} & \text { f. } F(x)=\left|x^{2}-2 x\right| & \text { g. } F(x)=\left|-x^{2}-2 x\right|\end{array} \)
Q:
2. Tyler filled up his bathtub, took a bath, and then drained the tub. The function \( B \)
gives the depth of the water, in inches, \( t \) minutes after Tyler began to fill the bathtub.
Explain the meaning of each statement in this situation.
a. \( B(0)=0 \)
b. \( B(1)<B(7) \)
c. \( B(9)=11 \)
d. \( B(10)=B(22) \)
e. \( B(20)>B(40) \)
Q:
O \( 1^{\circ} \) Tenente Maurício Pinheiro, da Brigada de
incêndio do CTRB, em conjunto com o Corpo de Bombeiros
do Pará, realizou um exercício de combate a incêndio. Nesse
exercício, do alto de um prédio de 10 m de altura lança-se
um jato d'água, com trajetória parabólica, até o topo de um
outro prédio de 18 m de altura. A distância entre os prédios
é de 16 m e a situação foi representada num sistema de eixos
cartesianos, conforme visualização ao lado.
Sabe-se ainda que quando a altura do jato d'agua era
de 22 m a distância horizontal ao prédio menor era de 8 m .
A altura máxima, em metro, atingida pelo jato de água é
(A) 22,25 .
(B) 23,50 .
(C) 24,25 .
(D) 26,75 .
(E) 35,75 .
Q:
Describe the behavior of the graph at the \( x \)-intercepts for the function \( f(x)=(2 x-7)^{7}(x+3)^{4} \). Be sure to identify
each \( x \)-intercept and justify your answer.
(4 points)
Q:
Select the function whose end behavior is described by \( f(x) \rightarrow \infty \) as \( x \rightarrow \infty \) and \( f(x) \rightarrow-\infty \) as \( x \rightarrow-\infty \)
(1 point)
\( f(x)=7 x^{9}-3 x^{2}-6 \)
\( f(x)=-\frac{1}{2} x^{3} \)
\( f(x)=x^{6}-3 x^{3}-6 x^{2}+x-1 \)
\( f(x)=-5 x^{4}-\frac{3}{2} \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit