girl-logo

Ask Questions

Pre Calculus Questions & Answers

Q:
8. The population of a community (in millions) can be approximated by \( p(t)=38.3 e^{x \ln 1.024} \), where \( t \) is years after 2000 . a. What is the estimated population for the year 2030 ? 78.018 Million of people
Q:
Calcular los valores que toman las funciones \( y=3^{x} \) \( y y=2^{x} \), para \( x=-3,-2,-1,0,1 \) y 2 . Elaborar una tabla de valores \( y \) representar sobre un mismo plano cartesiano las dos funciones. ¿Qué tienen en común las gráficas de las funciones \( y=2^{x} y y=3^{x} \) ?
Q:
Find the domain and range of \( y=f(x)=\frac{1}{\sqrt{4-x^{2}}} \)
Q:
Sketch the groph of the following ratonal function and stche heir property a. \( f(x)=\frac{x^{3}-1}{x^{2}-3 x+2} \) b. \( f(x)=\frac{x^{2}}{x^{2}+1} \)
Q:
QUESTION 7 Given: \( f(x)=\frac{2}{x+4}-1 \) 7.1 Write down the equation of the asymptotes of \( f \). 7.2 Calculate the intercepts of the graph of \( f \) with the axes. 7.3 Sketch the graph of \( f \), showing clearly the asymptotes and intercepts with the axes. 7.4 Write down the coordinates of the image of the \( x \)-intercept if it is reflected about the axis of symmetry \( y=-x-5 \). 7.5 Write down the range of \( y=-f(x) \). Describe in words, the transformation of \( f \) to \( g \) if \( g(x)=\frac{-2}{x-4}-1 \).
Q:
5. Trazar las gráficas de las siguientes funciones, determinando dominio \( y \) \( \begin{array}{llll}\text { a. } F(x)=x^{2}-2 x & \text { b. } F(x)=-x^{2}-2 x & \text { c. } F(x)=x^{2}-2 x+2 & \text { d. } f(x)=\sqrt{x^{2}-2 x} \\ \text { e. } f(x)=\sqrt{-x^{2}-2 x} & \text { f. } F(x)=\left|x^{2}-2 x\right| & \text { g. } F(x)=\left|-x^{2}-2 x\right|\end{array} \)
Q:
2. Tyler filled up his bathtub, took a bath, and then drained the tub. The function \( B \) gives the depth of the water, in inches, \( t \) minutes after Tyler began to fill the bathtub. Explain the meaning of each statement in this situation. a. \( B(0)=0 \) b. \( B(1)<B(7) \) c. \( B(9)=11 \) d. \( B(10)=B(22) \) e. \( B(20)>B(40) \)
Q:
O \( 1^{\circ} \) Tenente Maurício Pinheiro, da Brigada de incêndio do CTRB, em conjunto com o Corpo de Bombeiros do Pará, realizou um exercício de combate a incêndio. Nesse exercício, do alto de um prédio de 10 m de altura lança-se um jato d'água, com trajetória parabólica, até o topo de um outro prédio de 18 m de altura. A distância entre os prédios é de 16 m e a situação foi representada num sistema de eixos cartesianos, conforme visualização ao lado. Sabe-se ainda que quando a altura do jato d'agua era de 22 m a distância horizontal ao prédio menor era de 8 m . A altura máxima, em metro, atingida pelo jato de água é (A) 22,25 . (B) 23,50 . (C) 24,25 . (D) 26,75 . (E) 35,75 .
Q:
Describe the behavior of the graph at the \( x \)-intercepts for the function \( f(x)=(2 x-7)^{7}(x+3)^{4} \). Be sure to identify each \( x \)-intercept and justify your answer. (4 points)
Q:
Select the function whose end behavior is described by \( f(x) \rightarrow \infty \) as \( x \rightarrow \infty \) and \( f(x) \rightarrow-\infty \) as \( x \rightarrow-\infty \) (1 point) \( f(x)=7 x^{9}-3 x^{2}-6 \) \( f(x)=-\frac{1}{2} x^{3} \) \( f(x)=x^{6}-3 x^{3}-6 x^{2}+x-1 \) \( f(x)=-5 x^{4}-\frac{3}{2} \)

Test your knowledge on Pre Calculus!

Select the correct answer and check your answer

11 12 13 14 15 16 17 18 19 20
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions