Calculus Questions from Jan 04,2025

Browse the Calculus Q&A Archive for Jan 04,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
\( z ^ { \prime } + 1 = \operatorname { Sin } ( z ) \Rightarrow \frac { d z } { d x } + 1 = \operatorname { Sin } ( z ) \) If \( f(x)=\frac{\sqrt{x+2}}{3-3 x^{2}} \), for which values of \( x \) is \( \begin{array}{ll}1.2 .2 & f(x) \text { non real. } \\ 1.2 .3 & f(x) \text { undefined } \\ 1.2 .4 & f(x)>0\end{array} \) Part A: Let f be the function over \( ]-\infty ; \mathbf{1}[\mathrm{U}] \mathbf{1} ;+\infty\left[\right. \) by \( f(x)=\frac{x^{2}+a x+b}{x-1} \) where \( a \) and \( b \) are two real parameters. We denote by \( (C) \) its representative curve in \( n \) orthonormal system ( \( O ; \vec{i} ; \vec{j} \) ) 1) Write \( f^{\prime}(x) \) in terms of \( a \) and \( b \). 2) Determine \( a \) and \( b \) knowing that \( f \) admits at \( x=3 \) an extremum equal to 4 . Part B: Suppose that \( a=-2 \) and \( b=5 \) and we consider the function \( f \) defined over \( ]-\infty ; 1[U] 1 ;+\infty\left[\right. \) by \( f(x)=\frac{x^{2}-2 x+5}{x-1} \) and Let (C) its representative curve in the orthonormal system \( (O ; \vec{i} ; \vec{j}) \). 1) Calculate \( \lim _{x \rightarrow(1)^{+}} f(x) \) and \( \lim _{x \rightarrow(1)^{-}} f(x) \). Interpret graphically the obtained result. 2) Write \( \mathrm{f}(\mathrm{x}) \) in the form \( \mathrm{f}(\mathrm{x})=a \mathrm{x}+b+\frac{c}{} \), where \( \mathrm{a}, \mathrm{b} \) and c are three integers to be c Considere el movimiento de una particula con función ittinerario dada por \( X(t)=6+5 \cos (\pi / 6 t) \) Donde x estả en metros y t en segundos. a) Determine los instantes cuando la particula está en reposo. b) Determine los instantes en los cuales la aceleración es nula. c) ¿Cuál es la rapidez máxima? ¿En qué instante se alcanza? \( x y + y ^ { 2 } ) d y - x ^ { 2 } d x = 0 \) \( \int \frac { 1 } { 1 + \tan z } \) 125 Encuentra los valores de los números a y b para que las siguientes funciones sean continuas en tod los números reales. a) \( f(x)=\left\{\begin{array}{ll}|2-x| & \text { si } x \leq 2 \\ \frac{x}{b} & \text { si } 2<x \leq 4 \\ a & \text { si } x>4\end{array}\right. \) b) \( f(x)=\left\{\begin{array}{ll}x^{2}+2 b x+4 & \text { si } x<1 \\ a x+5 & \text { si } 1 \leq x \leq 2 \\ \frac{3 x-1}{x} & \text { si } x>2\end{array}\right. \) 122 Halla el valor que debe tomar a para que las siguientes funciones sean continuas. a) \( f(x)=\left\{\begin{array}{ll}3 x-4 & \text { si } x<1 \\ a & \text { si } x=1 \\ \frac{x-3}{2} & \text { si } x>1\end{array}\right. \) b) \( f(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x+2} & \text { si } x \neq-2 \\ a & \text { si } x=-2\end{array}\right. \) Determine el volumen del sólido generado al rotar el área bajo la curva \( y = \sin(x) \) desde \( x = 0 \) hasta \( x = \frac{\pi}{2} \) alrededor del eje x. Determinar o volume de um sólido cuja base é a região sob a curva \( y = \frac{1}{x} \) no intervalo de \( x = 1 \) a \( x = 4 \), utilizando seções transversais quadradas.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy