Q:
g. Una urna contiene 10 bolitas. De ellas, 7 son de color blanco y 3 son negras. Si se, realiza dos
veces el experimento aleatorio de extraer una bolita:
¿Cuál es la probabilidad de que en ambas extracciones se obtenga una bolita negra,
sabiendo que las extracciones fueron con devolución?
Q:
Given that A and B are mutually exclusive events. The probability that
event A occurs is 0,55 . The probability that event B does not occur
is 0,7 .
Calculate \( \mathrm{P}(\mathrm{A} \) or B\( ) \).
Q:
65358 - Guerrero, Faustino B - Math Models - Semester A / Unit 2 - Geometry, Probability and
6. Find the probability.
If you roll a die twice, what is the probability of getting a number greater than 3 on both rolls?
Q:
65358 - Guerrero, Faustino B - Math Models - Semester A / Unit 2 - Geometry, Probe
3. Find the probability.
A six-sided die is rolled. What is the probability of rolling a two or a five?
Q:
8.1 In a random physical sciences experiment, A and B are two different events. It was
found that:
\( \mathrm{P}(\mathrm{A})=\frac{2}{5}, \mathrm{P}\left(\mathrm{B}^{\prime}\right)=\frac{3}{8} \) and \( \mathrm{P}(\mathrm{A} \) or B\( )=\frac{5}{7} \)
\( 8.1 .1 \quad \begin{array}{l}\text { Calculate: } \\ \\ \text { (a) } \mathrm{P}(\mathrm{B}) \\ \text { (b) } \mathrm{P}(\mathrm{A} \text { and } \mathrm{B})\end{array} \)
\( \begin{array}{l}\text { Hence, determine whether events } \mathrm{A} \text { and } \mathrm{B} \text { are mutually exclusive. Motivate } \\ \text { your answer. }\end{array} \)
Q:
7.2 A survey was conducted among 150 learners in Grade 10 at a certain school to establish
how many of them owned the following devices: smartphone (S) or tablet (T).
The results were as follows:
- 8 learners did not own either a smartphone or a tablet.
20 learners owned both a smartphone and a tablet.
- \( x \) learners owned a tablet.
\( 7.2 .1 \quad \) Represent the information above in a Venn diagram.
\( 7.2 .2 \quad \) How many learners owned only a smartphone?
\( 7.2 .3 \quad \) Calculate the probability that a learner selected at random from this group:
(a) Owned only a smartphone
(b) Owned at most one type of device
Q:
QuESTION 7.1 Two events, A and B , are complementary and make up the entire sample space.
Also, \( \mathrm{P}\left(\mathrm{A}^{\prime}\right)=0,35 \).
\( 7.1 .1 \quad \) Complete the statement: \( \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=\ldots \)
\( 7.1 .2 \quad \) Write down the value of \( \mathrm{P}(\mathrm{A} \) and B\( ) \).
\( 7.1 .3 \quad \) Write down the value of \( \mathrm{P}(\mathrm{B}) \).
Q:
If the area to the left of \( x \) in a normal distribution is 0.692, what is the area to the right of \( x \) ?
If the area to the right of \( x \) in a normal distribution is 0.692, what is the area to the left of \( x \) ?
Question Help:
Submit Question
Q:
Uál es la probabilidad de que un matrimonio con cuatro hijos tenga exactamente dos niños? Supong
e es igualmente probable dar a luz un niño que una niña y que el género de cualquier hijo no influye
el género del otro.
Q:
21. The probability that Andrew goes to bed on time is \( 2 / 3 \). If he goes to bed on time the
probability that he wakes up early is \( 3 / 5 \) otherwise it is \( 1 / 7 \). If Andrew wakes up late, the
probability that he will be punctual for class is \( 1 / 4 \) otherwise its is \( 2 / 7 \).
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar