Q:
A Ud. lo contratan para realizar una medición de iluminación en una imprenta y obtiene los siguientes valores en lux:
Taller de tipografia
Iluminación general: \( 250 ; 290 ; 340 ; 145 ; 310 ; 340 ; 300 ; 320 ; 300 \)
Rotativas:
Recepción: \( 450 ; 410 ; 425 ; 400 ; 300 ; 400 ; 475 ; 210 ; 460 \)
En base a los resultados obtenidos calcule el nivel de iluminación promedio compare con la ley y calcule la uniformidad. En
base a los resultados genere una conclución y posibles recomendaciones.
Q:
A population of values has a normal distribution with \( \mu=243.7 \) and \( \sigma=69.6 \). You intend to draw a
random sample of size \( n=81 \).
Find the probability that a single randomly selected value is between 256.8 and 265.4 .
\( P(256.8<X<265.4)=\square \)
Find the probability that a sample of size \( n=81 \) is randomly selected with a mean between 256.8 and
265.4 .
\( P(256.8<M<265.4)=\square \)
Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact \( z \)-scores or \( z \) -
scores rounded to 3 decimal places are accepted.
Q:
You intend to draw a random sample of size \( n=556 \) from a population whose parameter is \( p=0.83 \)
What is the mean of the distribution of sample proportions?
\( \mu_{\widehat{p}}=0.83 \)
What is the standard deviation of the distribution of sample proportions?
(Report answer accurate to 2 decimal places.)
\( \sigma_{\widehat{p}}=\square \)
Q:
\[ y_{i}=\beta_{1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\varepsilon_{i}=x_{i}^{\prime} \beta+\varepsilon_{i} \]
a. Explain how the ordinary least squares estimator for \( \beta \) is determined and derive
an expression for \( b \).
b. Which assumptions are needed to make \( b \) an unbiased estimator for \( \beta \) ?
c. Explain how a confidence interval for \( \beta_{2} \) can be constructed. Which additional
d. Explain how one can test the hypothesis that \( \beta_{3}=1 \).
Q:
3.1.5 Data handling consist of a data handling cycle, in which step of the data handling
cycle will we identify the mean, mode and median also known as measures of
central tendency. Only write the appropriate letter that represents the step.
A. Develop a question.
B. Collect data.
C. Arrange data.
D. Summarise data.
E. Represent data.
F. Analyse data.
3.1 .6 Determine the probability of randomly selecting a month, which has an even
number, for the number of niny days in Johannesburg. Write your answer as a
fraction.
Q:
Assigning lower quotas, the following percentages add up to \( 99 \% \). Using the Hamilton Method, which of them gets its
upper quota?
\( 13.825 \% \)
\( 41.179 \% \)
\( 33.471 \% \)
\( 12.849 \% \)
Q:
Construye una tabla de frecuencias a partir de los siguientes datos de
temperatura \( \left({ }^{\circ} \mathrm{C}\right) \) registrados durante 10 dias: \( 22,24,25,22,21,23,22,24,21 \)
23.
Q:
As of the 2020 census, the city of Warren, MI has a population of 139,387 . There are 7 city council members. Find the
standard divisor. Round to the nearest thousandth, if needed.
\( 19,192.286 \)
5.022
\( 19,912.429 \)
\( 15,710.857 \)
Q:
The Detroit Red Wings' record for the 2021-2022 regular season was \( 32-40-10 \) ( 32 wins, 40 losses, 10 losses in
overtime). Determine the percentage of wins. Round to the nearest thousandth of a percent, if needed.
\( 48.780 \% \)
\( 39.024 \% \)
\( 12.195 \% \)
\( 32 \% \)
Q:
iiendo en cuenta los datos planteados desarrollar los puntos propuestos a continu
a. Diagrama de tallo y hoja
b. medidas de centralización (media. mediana. moda)
Tutores
AI
10x
La forma más rápida deObtenga respuestas y soluciones
Por texto
Introduce tu pregunta aquí…
Por imagen
Volver a cargar
Enviar