Question
upstudy study bank question image url

(2) \( \int \frac{10}{\sqrt[3]{3-5 x}} \mathrm{~d} x \);

Ask by Ruiz Brewer. in China
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral of \( \frac{10}{\sqrt[3]{3-5x}} \) with respect to \( x \) is \( -3\sqrt[3]{(3-5x)^{2}} + C \).

Solution

Calculate the integral \( \int \frac{10}{\sqrt[3]{3-5x}} dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{10}{\sqrt[3]{3-5x}} dx\) - step1: Evaluate the power: \(\int \frac{10}{\left(3-5x\right)^{\frac{1}{3}}} dx\) - step2: Rewrite the expression: \(\int 10\times \frac{1}{\left(3-5x\right)^{\frac{1}{3}}} dx\) - step3: Use properties of integrals: \(10\times \int \frac{1}{\left(3-5x\right)^{\frac{1}{3}}} dx\) - step4: Use the substitution \(dx=-\frac{1}{5} dt\) to transform the integral\(:\) \(10\times \int \frac{1}{\left(3-5x\right)^{\frac{1}{3}}}\times \left(-\frac{1}{5}\right) dt\) - step5: Simplify: \(10\times \int -\frac{1}{5\left(3-5x\right)^{\frac{1}{3}}} dt\) - step6: Use the substitution \(t=3-5x\) to transform the integral\(:\) \(10\times \int \frac{-1}{5t^{\frac{1}{3}}} dt\) - step7: Rewrite the fraction: \(10\times \int -\frac{1}{5t^{\frac{1}{3}}} dt\) - step8: Rewrite the expression: \(10\times \int -\frac{1}{5}\times \frac{1}{t^{\frac{1}{3}}} dt\) - step9: Use properties of integrals: \(10\left(-\frac{1}{5}\right)\times \int \frac{1}{t^{\frac{1}{3}}} dt\) - step10: Multiply the numbers: \(-2\times \int \frac{1}{t^{\frac{1}{3}}} dt\) - step11: Evaluate the integral: \(-2\times \frac{t^{-\frac{1}{3}+1}}{-\frac{1}{3}+1}\) - step12: Simplify: \(-2\times \frac{3}{2}t^{\frac{2}{3}}\) - step13: Multiply the numbers: \(-3t^{\frac{2}{3}}\) - step14: Substitute back: \(-3\left(3-5x\right)^{\frac{2}{3}}\) - step15: Simplify: \(-3\sqrt[3]{\left(3-5x\right)^{2}}\) - step16: Add the constant of integral C: \(-3\sqrt[3]{\left(3-5x\right)^{2}} + C, C \in \mathbb{R}\) The integral of \( \frac{10}{\sqrt[3]{3-5x}} \) with respect to \( x \) is \( -3\sqrt[3]{(3-5x)^{2}} + C \), where \( C \) is an arbitrary constant.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the integral \( \int \frac{10}{\sqrt[3]{3-5 x}} \mathrm{~d} x \), we can use substitution. Let \( u = 3 - 5x \), which gives \( \mathrm{d}u = -5 \mathrm{d}x \) or \( \mathrm{d}x = -\frac{1}{5} \mathrm{d}u \). Substituting this into the integral transforms it into: \[ \int \frac{10}{\sqrt[3]{u}} \left( -\frac{1}{5} \right) \mathrm{d}u = -2 \int u^{-\frac{1}{3}} \mathrm{d}u. \] Now, using the power rule for integration: \[ -2 \cdot \frac{u^{\frac{2}{3}}}{\frac{2}{3}} + C = -3u^{\frac{2}{3}} + C. \] Substituting back for \( u \): \[ -3(3 - 5x)^{\frac{2}{3}} + C. \] Thus, the final answer for the integral is: \[ -3(3 - 5x)^{\frac{2}{3}} + C. \] Don't forget to simplify and express your answer clearly! And remember to always check your work by differentiating your answer to see if you get the original integrand back.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy