Question
upstudy study bank question image url

construct an equilateral triangle in \( A B=B C=A C=5.9 \mathrm{~cm} \).

Ask by Page Reese. in India
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

To construct an equilateral triangle with each side measuring 5.9 cm, follow these steps: 1. **Draw the Base:** Use a straightedge to draw a line segment \( AB \) that is exactly 5.9 cm long. 2. **Set the Compass:** Adjust your compass to a width of 5.9 cm. 3. **Draw Arcs:** - Place the compass point on \( A \) and draw an arc above the base. - Without changing the compass width, place it on \( B \) and draw another arc intersecting the first arc. 4. **Complete the Triangle:** Draw lines from the intersection point \( C \) to \( A \) and \( B \). 5. **Verify:** Ensure all sides are 5.9 cm and all angles are 60 degrees. This will create an equilateral triangle with each side measuring 5.9 cm.

Solution

Constructing an equilateral triangle with each side measuring \( 5.9 \) cm can be accomplished using a compass and a straightedge. Below are the step-by-step instructions to guide you through the process: ### **Materials Needed:** - A straightedge (ruler without markings for accuracy) - A compass - A pencil - A piece of paper ### **Steps to Construct the Equilateral Triangle:** 1. **Draw the Base:** - **Step 1:** Place the straightedge on the paper and draw a straight line segment \( AB \) that is exactly \( 5.9 \) cm long. This will be the base of your equilateral triangle. 2. **Set the Compass:** - **Step 2:** Adjust your compass to a width of \( 5.9 \) cm. Ensure that the compass remains at this width throughout the construction. 3. **Draw Arcs from Point A:** - **Step 3:** Place the compass point on vertex \( A \) of the base \( AB \). - **Step 4:** Draw an arc above the base. This arc will represent all possible locations for the third vertex \( C \) that are \( 5.9 \) cm away from \( A \). 4. **Draw Arcs from Point B:** - **Step 5:** Without changing the compass width, place the compass point on vertex \( B \) of the base \( AB \). - **Step 6:** Draw another arc that intersects with the arc drawn from point \( A \). The intersection point of these two arcs will be the third vertex \( C \) of the equilateral triangle. 5. **Complete the Triangle:** - **Step 7:** Using the straightedge, draw straight lines connecting vertex \( C \) to vertices \( A \) and \( B \). Specifically, draw lines \( AC \) and \( BC \). 6. **Verify the Triangle:** - **Step 8:** Measure all three sides \( AB \), \( BC \), and \( AC \) to confirm that each is exactly \( 5.9 \) cm long. Additionally, verify that all three angles are \( 60^\circ \) each, which is characteristic of an equilateral triangle. ### **Visual Representation:** While I can't provide a visual diagram here, following the steps above with precision will result in an accurate equilateral triangle. Each step ensures that all sides and angles are equal, maintaining the properties of an equilateral triangle. ### **Tips for Accuracy:** - **Compass Stability:** Keep the compass steady and ensure that the width remains unchanged once set to \( 5.9 \) cm. - **Sharp Pencils:** Use a sharp pencil to make precise marks, especially where the arcs intersect. - **Careful Measurement:** Double-check the length of the base before proceeding to prevent cumulative errors. By following these instructions carefully, you'll successfully construct an equilateral triangle with each side measuring \( 5.9 \) cm.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To construct an equilateral triangle where each side measures 5.9 cm, start by using a ruler to draw a straight line segment AB that is 5.9 cm long. Next, switch to a compass and place the pointed end on point A. Open the compass to 5.9 cm and draw an arc. Now, move the compass to point B, keeping the same width, and draw another arc that intersects with the first arc. Label the intersection point as C. Finally, connect points A, B, and C with straight lines, and voilà, you have constructed your equilateral triangle! If you're looking for a neat trick, remember to use the compass to mark points accurately! One common mistake is trying to measure the distance with the compass instead of just tracing the arcs—this can lead to inaccuracies. Always ensure the compass width remains unchanged while moving between points for precise results!

Related Questions

Exercice 82 Le plan est rapporté à un repère orthonormal direct \( (0, \vec{u}, \vec{v}) \). On appelle \( f \) l'application qui, à tout point \( M \) d'affixe \( z(z \neq-1) \) associe le point \( M^{\prime} \) d'affixe \( z^{\prime} \) telle que : \( z^{\prime}=\frac{-i z-2}{z+1} \). Soient A, B et C les points d'affixes respectives \( a=-1, b=2 i \) et \( c=-i \). 1) Soit \( C^{\prime} \) l'image du point \( C \) par \( f \). Donner l'affixe \( c^{\prime} \) du point \( C^{\prime} \) sous forme algébrique, puis sous forme trigonométrique. 2) Calcule l'affixe \( d \) du point \( D \) ayant pour image par \( f \) le point \( D^{\prime} \) d'affixe \( d^{\prime}=\frac{1}{2} \). 3) Pour tout nombre complexe \( z \) différent de -1 , on note \( p \) le module de \( z+1 \) (c'est-à-dire \( |z+1|=p) \) et \( p^{\prime} \) le module de \( z^{\prime}+i\left(\right. \) c'est-à-dire \( \left.\left|z^{\prime}+i\right|=p^{\prime}\right) \). a) Démontre que pour tout nombre complexe \( z \) différent de -1 , on a : \( p p^{\prime}=\sqrt{5} \). b) Si le point \( M \) appartient au cercle \( (\Gamma) \) de centre A et de rayon 2 , montre qu'alors \( M^{\prime}=f(M) \) appartient à un cercle ( \( \left.\Gamma^{\prime}\right) \) dont on précisera le centre et le rayon. 4) Pour tout nombre complexe \( z \) différent de -1 , on considère le nombre complexe \( \omega=\frac{z-2 t}{z+1} \). a) Interprète géométriquement l'argument du nombre complexe \( \omega \). b) Montre que \( z^{\prime}=-i \omega \). c) Détermine l'ensemble \( (F) \) des points \( M \) d'affixe \( z \) telle que \( z^{\prime} \) soit un réel non nul. d) Vérifie que le point \( D \) appartient aux ensembles \( (\Gamma) \) et \( (F) \). 5) Représente les ensembles \( (\Gamma) \), (F) et \( \left(\Gamma^{\prime}\right) \) en prenant 4 cm pour unité graphique.
Geometry Mali Feb 03, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy