Pregunta
upstudy study bank question image url

construct an equilateral triangle in \( A B=B C=A C=5.9 \mathrm{~cm} \).

Ask by Page Reese. in India
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To construct an equilateral triangle with each side measuring 5.9 cm, follow these steps: 1. **Draw the Base:** Use a straightedge to draw a line segment \( AB \) that is exactly 5.9 cm long. 2. **Set the Compass:** Adjust your compass to a width of 5.9 cm. 3. **Draw Arcs:** - Place the compass point on \( A \) and draw an arc above the base. - Without changing the compass width, place it on \( B \) and draw another arc intersecting the first arc. 4. **Complete the Triangle:** Draw lines from the intersection point \( C \) to \( A \) and \( B \). 5. **Verify:** Ensure all sides are 5.9 cm and all angles are 60 degrees. This will create an equilateral triangle with each side measuring 5.9 cm.

Solución

Constructing an equilateral triangle with each side measuring \( 5.9 \) cm can be accomplished using a compass and a straightedge. Below are the step-by-step instructions to guide you through the process: ### **Materials Needed:** - A straightedge (ruler without markings for accuracy) - A compass - A pencil - A piece of paper ### **Steps to Construct the Equilateral Triangle:** 1. **Draw the Base:** - **Step 1:** Place the straightedge on the paper and draw a straight line segment \( AB \) that is exactly \( 5.9 \) cm long. This will be the base of your equilateral triangle. 2. **Set the Compass:** - **Step 2:** Adjust your compass to a width of \( 5.9 \) cm. Ensure that the compass remains at this width throughout the construction. 3. **Draw Arcs from Point A:** - **Step 3:** Place the compass point on vertex \( A \) of the base \( AB \). - **Step 4:** Draw an arc above the base. This arc will represent all possible locations for the third vertex \( C \) that are \( 5.9 \) cm away from \( A \). 4. **Draw Arcs from Point B:** - **Step 5:** Without changing the compass width, place the compass point on vertex \( B \) of the base \( AB \). - **Step 6:** Draw another arc that intersects with the arc drawn from point \( A \). The intersection point of these two arcs will be the third vertex \( C \) of the equilateral triangle. 5. **Complete the Triangle:** - **Step 7:** Using the straightedge, draw straight lines connecting vertex \( C \) to vertices \( A \) and \( B \). Specifically, draw lines \( AC \) and \( BC \). 6. **Verify the Triangle:** - **Step 8:** Measure all three sides \( AB \), \( BC \), and \( AC \) to confirm that each is exactly \( 5.9 \) cm long. Additionally, verify that all three angles are \( 60^\circ \) each, which is characteristic of an equilateral triangle. ### **Visual Representation:** While I can't provide a visual diagram here, following the steps above with precision will result in an accurate equilateral triangle. Each step ensures that all sides and angles are equal, maintaining the properties of an equilateral triangle. ### **Tips for Accuracy:** - **Compass Stability:** Keep the compass steady and ensure that the width remains unchanged once set to \( 5.9 \) cm. - **Sharp Pencils:** Use a sharp pencil to make precise marks, especially where the arcs intersect. - **Careful Measurement:** Double-check the length of the base before proceeding to prevent cumulative errors. By following these instructions carefully, you'll successfully construct an equilateral triangle with each side measuring \( 5.9 \) cm.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To construct an equilateral triangle where each side measures 5.9 cm, start by using a ruler to draw a straight line segment AB that is 5.9 cm long. Next, switch to a compass and place the pointed end on point A. Open the compass to 5.9 cm and draw an arc. Now, move the compass to point B, keeping the same width, and draw another arc that intersects with the first arc. Label the intersection point as C. Finally, connect points A, B, and C with straight lines, and voilà, you have constructed your equilateral triangle! If you're looking for a neat trick, remember to use the compass to mark points accurately! One common mistake is trying to measure the distance with the compass instead of just tracing the arcs—this can lead to inaccuracies. Always ensure the compass width remains unchanged while moving between points for precise results!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad