Question
upstudy study bank question image url

If \( \sin \theta=\frac{2}{3}, 0<\theta<\frac{\pi}{2} \), find the exact value of each of the following. \( \begin{array}{lll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2}\end{array} \) (d) \( \cos \frac{\theta}{2} \) \( \begin{array}{l}\text { (a) } \sin (2 \theta)=\frac{4 \sqrt{5}}{9} \\ \text { (Type an exact answer, using radicals as needed.) } \\ \text { (b) } \cos (2 \theta)=\frac{1}{9} \\ \text { (Type an exact answer, using radicals as needed.) } \\ \text { (c) } \sin \frac{\theta}{2}=\square\end{array} \)

Ask by Wagner Wheeler. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \sin \frac{\theta}{2} = \sqrt{\dfrac{3 - \sqrt{5}}{6}} \]

Solution

To find the exact values of \( \sin \frac{\theta}{2} \) and \( \cos \frac{\theta}{2} \) given that \( \sin \theta = \frac{2}{3} \) and \( 0 < \theta < \frac{\pi}{2} \), we can use the **half-angle formulas**. ### Given: \[ \sin \theta = \frac{2}{3} \] Since \( 0 < \theta < \frac{\pi}{2} \), \( \cos \theta \) is positive. We can find \( \cos \theta \) using the Pythagorean identity: \[ \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(\frac{2}{3}\right)^2} = \sqrt{1 - \frac{4}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \] ### (c) \( \sin \frac{\theta}{2} \) The half-angle formula for sine is: \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} \] Substitute \( \cos \theta \): \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \frac{\sqrt{5}}{3}}{2}} = \sqrt{\frac{\frac{3 - \sqrt{5}}{3}}{2}} = \sqrt{\frac{3 - \sqrt{5}}{6}} \] ### (d) \( \cos \frac{\theta}{2} \) The half-angle formula for cosine is: \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} \] Substitute \( \cos \theta \): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \frac{\sqrt{5}}{3}}{2}} = \sqrt{\frac{\frac{3 + \sqrt{5}}{3}}{2}} = \sqrt{\frac{3 + \sqrt{5}}{6}} \] ### Final Answers: \[ \begin{aligned} \text{(c) } \sin \frac{\theta}{2} &= \sqrt{\dfrac{3 - \sqrt{5}}{6}} \\ \text{(d) } \cos \frac{\theta}{2} &= \sqrt{\dfrac{3 + \sqrt{5}}{6}} \end{aligned} \] **Answer:** Problem (c) Answer \[ \sin \frac{\theta}{2} = \sqrt{\dfrac{3 - \sqrt{5}}{6}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find the exact values, we start by using the given \( \sin \theta = \frac{2}{3} \) and applying trigonometric identities. (a) For \( \sin (2\theta) \), we use the double angle formula: \[ \sin (2\theta) = 2 \sin \theta \cos \theta. \] First, we need to find \( \cos \theta \). Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we have: \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{2}{3}\right)^2 = 1 - \frac{4}{9} = \frac{5}{9}. \] Thus, \( \cos \theta = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \). Now, substituting back: \[ \sin (2\theta) = 2 \times \frac{2}{3} \times \frac{\sqrt{5}}{3} = \frac{4\sqrt{5}}{9}. \] (b) For \( \cos (2\theta) \), we use the identity: \[ \cos (2\theta) = \cos^2 \theta - \sin^2 \theta. \] Using \( \cos^2 \theta = \frac{5}{9} \) and \( \sin^2 \theta = \frac{4}{9} \): \[ \cos (2\theta) = \frac{5}{9} - \frac{4}{9} = \frac{1}{9}. \] (c) Now, for \( \sin \frac{\theta}{2} \), we use the half-angle formula: \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}. \] We already found \( \cos \theta = \frac{\sqrt{5}}{3} \). So, \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \frac{\sqrt{5}}{3}}{2}} = \sqrt{\frac{\frac{3 - \sqrt{5}}{3}}{2}} = \sqrt{\frac{3 - \sqrt{5}}{6}}. \] (d) Lastly, for \( \cos \frac{\theta}{2} \), we use: \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}. \] Substituting \( \cos \theta = \frac{\sqrt{5}}{3} \): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \frac{\sqrt{5}}{3}}{2}} = \sqrt{\frac{\frac{3 + \sqrt{5}}{3}}{2}} = \sqrt{\frac{3 + \sqrt{5}}{6}}. \] So, the final answers are: (a) \( \sin (2\theta) = \frac{4\sqrt{5}}{9} \) (b) \( \cos (2\theta) = \frac{1}{9} \) (c) \( \sin \frac{\theta}{2} = \sqrt{\frac{3 - \sqrt{5}}{6}} \) (d) \( \cos \frac{\theta}{2} = \sqrt{\frac{3 + \sqrt{5}}{6}} \)

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy