Find the exact value of the expression. Do not use a calculator. \( \tan 76^{\circ}-\frac{\cos 14^{\circ}}{\cos 76^{\circ}} \) \( \tan 76^{\circ}-\frac{\cos 14^{\circ}}{\cos 76^{\circ}}=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To simplify the expression \( \tan 76^{\circ}-\frac{\cos 14^{\circ}}{\cos 76^{\circ}} \), we first note the trigonometric identity \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Therefore, \[ \tan 76^{\circ} = \frac{\sin 76^{\circ}}{\cos 76^{\circ}}. \] Now, substituting this into the expression, we have: \[ \tan 76^{\circ} - \frac{\cos 14^{\circ}}{\cos 76^{\circ}} = \frac{\sin 76^{\circ}}{\cos 76^{\circ}} - \frac{\cos 14^{\circ}}{\cos 76^{\circ}}. \] We can combine the two fractions since they have the same denominator: \[ = \frac{\sin 76^{\circ} - \cos 14^{\circ}}{\cos 76^{\circ}}. \] Next, let's use the co-function identity which tells us that \( \sin(90^{\circ} - \theta) = \cos \theta \). Here, we have: \[ \sin 76^{\circ} = \cos 14^{\circ}, \] because \( 76^{\circ} = 90^{\circ} - 14^{\circ} \). Thus, substituting this back in gives: \[ = \frac{\cos 14^{\circ} - \cos 14^{\circ}}{\cos 76^{\circ}} = \frac{0}{\cos 76^{\circ}} = 0. \] Hence, the exact value of the expression is: \[ \boxed{0}. \]