Question
upstudy study bank question image url

43. \( \int_{0}^{\pi} f(x) d x \) donde \( f(x)=\left\{\begin{array}{ll}\operatorname{sen} x & \text { si } 0 \leqslant x<\pi / 2 \\ \cos x & \text { si } \pi / 2 \leqslant x \leqslant \pi\end{array}\right. \)

Ask by Johnson Collins. in Colombia
Mar 31,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral de \( f(x) \) desde 0 hasta \( \pi \) es 0.

Solution

Consideremos la integral definida por la función escalonada \[ \int_{0}^{\pi} f(x) \, dx, \] donde \[ f(x)=\begin{cases} \sin x & \text{si } 0 \leq x < \frac{\pi}{2},\\[6pt] \cos x & \text{si } \frac{\pi}{2} \leq x \leq \pi. \end{cases} \] Dividiremos la integral en dos partes, de acuerdo con la definición de \( f(x) \): \[ \int_{0}^{\pi} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \, dx + \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx. \] 1. **Evaluación de** \(\displaystyle \int_{0}^{\frac{\pi}{2}} \sin x \, dx\): La integral de \(\sin x\) es \(-\cos x\). Evaluamos: \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = \left[-\cos x \right]_{0}^{\frac{\pi}{2}} = \Bigl[-\cos \frac{\pi}{2}\Bigr] - \Bigl[-\cos 0\Bigr]. \] Sabemos que \(\cos \frac{\pi}{2} = 0\) y \(\cos 0 = 1\), por lo que: \[ \left[-\cos \frac{\pi}{2}\right] - \left[-\cos 0\right] = \bigl[0\bigr] - \bigl[-1\bigr] = 1. \] 2. **Evaluación de** \(\displaystyle \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx\): La integral de \(\cos x\) es \(\sin x\). Evaluamos: \[ \int_{\frac{\pi}{2}}^{\pi} \cos x \, dx = \left[\sin x\right]_{\frac{\pi}{2}}^{\pi} = \sin \pi - \sin \frac{\pi}{2}. \] Como \(\sin \pi = 0\) y \(\sin \frac{\pi}{2} = 1\), obtenemos: \[ 0 - 1 = -1. \] 3. **Suma de las dos partes:** \[ \int_{0}^{\pi} f(x) \, dx = 1 + (-1) = 0. \] Por lo tanto, el valor de la integral es: \[ \boxed{0}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Para resolver la integral \( \int_{0}^{\pi} f(x) dx \) donde la función \( f(x) \) se define por partes, primero debemos dividir la integral en los límites que establecen la definición de la función: \[ \int_{0}^{\pi} f(x) dx = \int_{0}^{\pi/2} \sin x \, dx + \int_{\pi/2}^{\pi} \cos x \, dx. \] Calculamos cada parte individualmente: 1. \( \int_{0}^{\pi/2} \sin x \, dx = -\cos x \bigg|_{0}^{\pi/2} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1. \) 2. \( \int_{\pi/2}^{\pi} \cos x \, dx = \sin x \bigg|_{\pi/2}^{\pi} = \sin(\pi) - \sin\left(\frac{\pi}{2}\right) = 0 - 1 = -1. \) Ahora sumamos los resultados: \[ \int_{0}^{\pi} f(x) \, dx = 1 - 1 = 0. \] Por lo tanto, el resultado de la integral es \[ \boxed{0}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy