Question
upstudy study bank question image url

\( \frac { \sin x ( 80 - x ) \cdot \sin ( 180 - x ) } { \cos ( 300 ^ { \circ } - x ) \cdot \sin ( 150 - x ) \cdot \cos ( 90 - x ) } \)

Ask by Estrada Morgan. in South Africa
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified expression is: \[ \frac{\sin x (80 - x)}{\cos(300^\circ - x) \cdot \sin(150^\circ - x)} \]

Solution

Simplify the expression by following steps: - step0: Solution: \(\sin\left(x\right)\left(80-x\right)\sin\left(180-x\right)\) - step1: Multiply the terms: \(\sin\left(x\right)\sin\left(180-x\right)\left(80-x\right)\) - step2: Rewrite the expression: \(80\sin\left(180-x\right)\sin\left(x\right)-\sin\left(180-x\right)\sin\left(x\right)\times x\) - step3: Rewrite the expression: \(80\sin\left(x\right)\sin\left(180-x\right)-x\sin\left(x\right)\sin\left(180-x\right)\) Calculate or simplify the expression \( \cos(300 - x) * \sin(150 - x) * \cos(90 - x) \). Simplify the expression by following steps: - step0: Solution: \(\cos\left(300-x\right)\sin\left(150-x\right)\cos\left(90-x\right)\) Calculate or simplify the expression \( 80*\sin(x)*\sin(180-x)-x*\sin(x)*\sin(180-x) \). Simplify the expression by following steps: - step0: Solution: \(80\sin\left(x\right)\sin\left(180-x\right)-x\sin\left(x\right)\sin\left(180-x\right)\) Calculate or simplify the expression \( \cos(300-x)*\sin(150-x)*\cos(90-x) \). Simplify the expression by following steps: - step0: Solution: \(\cos\left(300-x\right)\sin\left(150-x\right)\cos\left(90-x\right)\) Let's simplify the given expression step by step: The original expression is: \[ \frac { \sin x ( 80 - x ) \cdot \sin ( 180 - x ) } { \cos ( 300 ^ { \circ } - x ) \cdot \sin ( 150 - x ) \cdot \cos ( 90 - x ) } \] ### Step 1: Simplify the Numerator The numerator is: \[ \sin x (80 - x) \cdot \sin(180 - x) \] Using the identity \(\sin(180 - x) = \sin x\), we can rewrite the numerator as: \[ \sin x (80 - x) \cdot \sin x = \sin^2 x (80 - x) \] ### Step 2: Simplify the Denominator The denominator is: \[ \cos(300 - x) \cdot \sin(150 - x) \cdot \cos(90 - x) \] Using the identity \(\cos(90 - x) = \sin x\), we can rewrite the denominator as: \[ \cos(300 - x) \cdot \sin(150 - x) \cdot \sin x \] ### Step 3: Combine the Results Now, substituting the simplified numerator and denominator back into the expression, we have: \[ \frac{\sin^2 x (80 - x)}{\cos(300 - x) \cdot \sin(150 - x) \cdot \sin x} \] We can cancel one \(\sin x\) from the numerator and denominator (assuming \(\sin x \neq 0\)): \[ \frac{\sin x (80 - x)}{\cos(300 - x) \cdot \sin(150 - x)} \] ### Final Expression Thus, the simplified form of the original expression is: \[ \frac{\sin x (80 - x)}{\cos(300 - x) \cdot \sin(150 - x)} \] This is the final simplified expression.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To simplify the expression \( \frac { \sin x ( 80 - x ) \cdot \sin ( 180 - x ) } { \cos ( 300 ^ { \circ } - x ) \cdot \sin ( 150 - x ) \cdot \cos ( 90 - x ) } \), we start by simplifying the trigonometric functions involved. 1. **Sin and Cos Functions:** We know that \( \sin(180 - x) = \sin x \) and \( \cos(90 - x) = \sin x \). Using these properties: \[ \sin(180 - x) = \sin x \] Replacing \( \sin(180 - x) \) in the numerator gives: \[ \sin x (80 - x) \cdot \sin x = \sin^2 x (80 - x) \] The numerator simplifies to: \[ \sin^2 x (80 - x) \] 2. **Cosine Simplifications:** We know that: \[ \cos(300^\circ - x) = \cos(360^\circ - 60^\circ - x) = \cos(-60^\circ - x) = \cos(60^\circ + x) \] We can further expand that if needed or leave it as is for the expression. The term \(\sin(150 - x)\) simplifies using \( \sin(150^\circ - x) = \sin(30^\circ + x) = \sin(30^\circ)\cos(x) + \cos(30^\circ)\sin(x) = \frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x)\). The denominator thus becomes: \[ \cos(300^\circ - x) \cdot \left( \frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x) \right) \cdot \sin x \] 3. **Combining it all together:** The full expression now looks like: \[ \frac {\sin^2 x (80 - x)} {\cos(300^\circ - x) \cdot \sin(150 - x) \cdot \sin x} \] Canceling \( \sin x \) from numerator and denominator gives: \[ \frac {\sin x (80 - x)} {\cos(300^\circ - x) \cdot \sin(150 - x)} \] At this point, we can leave the expression simplified as: \[ \frac{\sin x (80 - x)}{\cos(300^\circ - x) \cdot \sin(150 - x)} \] This is a cleaner representation of the original expression, using fundamental trigonometric identities to achieve the simplification.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy