Question
upstudy study bank question image url

Current Skill A line has this equation: \( y=\frac{1}{6} x+3 \) Write an equation for the perpendicular line that goes through \( (-5,8) \).

Ask by Dawson Gibson. in the United States
Feb 02,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The equation of the perpendicular line is \( y = -6x - 22 \).

Solution

To find the equation of the line perpendicular to \( y = \frac{1}{6}x + 3 \) that passes through the point \( (-5, 8) \), follow these steps: 1. **Determine the slope of the given line:** The equation is in the slope-intercept form \( y = mx + b \), where \( m \) is the slope. \[ m_1 = \frac{1}{6} \] 2. **Find the slope of the perpendicular line:** The slope of a line perpendicular to another is the negative reciprocal of the original slope. \[ m_2 = -\frac{1}{m_1} = -6 \] 3. **Use the point-slope form to find the equation:** The point-slope form is: \[ y - y_1 = m(x - x_1) \] Substituting \( m = -6 \) and the point \( (-5, 8) \): \[ y - 8 = -6(x - (-5)) \] \[ y - 8 = -6(x + 5) \] 4. **Simplify to slope-intercept form:** \[ y - 8 = -6x - 30 \] \[ y = -6x - 22 \] **Final Answer:** \[ y = -6x - 22 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find the equation of the line perpendicular to \( y=\frac{1}{6}x+3 \), we first need to determine the slope of the original line, which is \( \frac{1}{6} \). The slope of a line that is perpendicular to it is the negative reciprocal, so we calculate it as \( -6 \). Now using the point-slope form \( y - y_1 = m(x - x_1) \), where \( m \) is the slope and \( (x_1, y_1) \) is the point \( (-5, 8) \), we plug in our values: \[ y - 8 = -6(x + 5) \] Distributing the slope: \[ y - 8 = -6x - 30 \] Now, solving for \( y \): \[ y = -6x - 30 + 8 \] \[ y = -6x - 22 \] Thus, the equation of the perpendicular line is \( y = -6x - 22 \).

Related Questions

Exercice 82 Le plan est rapporté à un repère orthonormal direct \( (0, \vec{u}, \vec{v}) \). On appelle \( f \) l'application qui, à tout point \( M \) d'affixe \( z(z \neq-1) \) associe le point \( M^{\prime} \) d'affixe \( z^{\prime} \) telle que : \( z^{\prime}=\frac{-i z-2}{z+1} \). Soient A, B et C les points d'affixes respectives \( a=-1, b=2 i \) et \( c=-i \). 1) Soit \( C^{\prime} \) l'image du point \( C \) par \( f \). Donner l'affixe \( c^{\prime} \) du point \( C^{\prime} \) sous forme algébrique, puis sous forme trigonométrique. 2) Calcule l'affixe \( d \) du point \( D \) ayant pour image par \( f \) le point \( D^{\prime} \) d'affixe \( d^{\prime}=\frac{1}{2} \). 3) Pour tout nombre complexe \( z \) différent de -1 , on note \( p \) le module de \( z+1 \) (c'est-à-dire \( |z+1|=p) \) et \( p^{\prime} \) le module de \( z^{\prime}+i\left(\right. \) c'est-à-dire \( \left.\left|z^{\prime}+i\right|=p^{\prime}\right) \). a) Démontre que pour tout nombre complexe \( z \) différent de -1 , on a : \( p p^{\prime}=\sqrt{5} \). b) Si le point \( M \) appartient au cercle \( (\Gamma) \) de centre A et de rayon 2 , montre qu'alors \( M^{\prime}=f(M) \) appartient à un cercle ( \( \left.\Gamma^{\prime}\right) \) dont on précisera le centre et le rayon. 4) Pour tout nombre complexe \( z \) différent de -1 , on considère le nombre complexe \( \omega=\frac{z-2 t}{z+1} \). a) Interprète géométriquement l'argument du nombre complexe \( \omega \). b) Montre que \( z^{\prime}=-i \omega \). c) Détermine l'ensemble \( (F) \) des points \( M \) d'affixe \( z \) telle que \( z^{\prime} \) soit un réel non nul. d) Vérifie que le point \( D \) appartient aux ensembles \( (\Gamma) \) et \( (F) \). 5) Représente les ensembles \( (\Gamma) \), (F) et \( \left(\Gamma^{\prime}\right) \) en prenant 4 cm pour unité graphique.
Geometry Mali Feb 03, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy