Question
upstudy study bank question image url

Find the exact value of each of the following under the given conditions below. \[ \tan \alpha=-\frac{12}{5}, \frac{\pi}{2}<\alpha<\pi ; \cos \beta=\frac{1}{2}, 0<\beta<\frac{\pi}{2} \] \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \)

Ask by Reid Osborne. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \begin{array}{llll} \text{(a) } \sin(\alpha + \beta) = \frac{-12 + 5\sqrt{3}}{26} \\ \text{(b) } \cos(\alpha + \beta) = \frac{5 + 12\sqrt{3}}{26} \\ \text{(c) } \sin(\alpha - \beta) = \frac{-12 - 5\sqrt{3}}{26} \\ \text{(d) } \tan(\alpha - \beta) = \frac{-12 - 5\sqrt{3}}{5 - 12\sqrt{3}} \\ \end{array} \]

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

To find the values of \(\sin(\alpha + \beta)\), \(\cos(\alpha + \beta)\), \(\sin(\alpha - \beta)\), and \(\tan(\alpha - \beta)\), we first need to find \(\sin \alpha\) and \(\cos \alpha\) based on the given condition for \(\tan \alpha\) and then find \(\sin \beta\) and \(\cos \beta\). **Step 1: Finding \(\sin \alpha\) and \(\cos \alpha\)** Given \(\tan \alpha = -\frac{12}{5}\) in the interval \(\frac{\pi}{2} < \alpha < \pi\): - Since \(\tan\) is negative in the second quadrant, we conclude that \(\sin \alpha > 0\) and \(\cos \alpha < 0\). - Let the opposite side be 12 and the adjacent side be -5 (negative because it's in the second quadrant). Now let's find the hypotenuse \(r\): \[ r = \sqrt{(-5)^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] Thus: \[ \sin \alpha = \frac{12}{13}, \quad \cos \alpha = -\frac{5}{13} \] **Step 2: Finding \(\sin \beta\) and \(\cos \beta\)** Given \(\cos \beta = \frac{1}{2}\) in the interval \(0 < \beta < \frac{\pi}{2\): - In this quadrant, both sine and cosine are positive. Thus: \[ \sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] **Step 3: Calculating the values** (a) \(\sin(\alpha + \beta)\): \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] \[ = \frac{12}{13} \cdot \frac{1}{2} + \left(-\frac{5}{13}\right) \cdot \frac{\sqrt{3}}{2} \] \[ = \frac{12}{26} - \frac{5\sqrt{3}}{26} = \frac{12 - 5\sqrt{3}}{26} \] (b) \(\cos(\alpha + \beta)\): \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ = \left(-\frac{5}{13}\right) \cdot \frac{1}{2} - \frac{12}{13} \cdot \frac{\sqrt{3}}{2} \] \[ = -\frac{5}{26} - \frac{12\sqrt{3}}{26} = -\frac{5 + 12\sqrt{3}}{26} \] (c) \(\sin(\alpha - \beta)\): \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \] \[ = \frac{12}{13} \cdot \frac{1}{2} - \left(-\frac{5}{13}\right) \cdot \frac{\sqrt{3}}{2} \] \[ = \frac{12}{26} + \frac{5\sqrt{3}}{26} = \frac{12 + 5\sqrt{3}}{26} \] (d) \(\tan(\alpha - \beta)\): Using the formula \(\tan(\alpha - \beta)=\frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)}\) and knowing that \(\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta\): \[ \cos(\alpha - \beta) = \left(-\frac{5}{13}\right) \cdot \frac{1}{2} + \frac{12}{13} \cdot \frac{\sqrt{3}}{2} \] \[ = -\frac{5}{26} + \frac{12\sqrt{3

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy