Comprosar las mahrices: \( A=\left(\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right) \) y \( B=\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right) \) que; a) \( (A+B)^{2}=A^{2}+2 A B+B^{2} \) b) \( (A-B)^{2}=A^{2}-2 A B+B^{2} \) c) \( (A+B)(A-B)=A^{2}-B^{2} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Primero, vamos a calcular las matrices \( A+B \) y \( A-B \): \[ A + B = \left( \begin{array}{ll} 1 + 2 & 2 - 1 \\ 3 + 1 & 0 + 3 \end{array} \right) = \left( \begin{array}{ll} 3 & 1 \\ 4 & 3 \end{array} \right) \] \[ A - B = \left( \begin{array}{ll} 1 - 2 & 2 + 1 \\ 3 - 1 & 0 - 3 \end{array} \right) = \left( \begin{array}{ll} -1 & 3 \\ 2 & -3 \end{array} \right) \] A continuación, calculamos \( A^2 \), \( B^2 \), y \( AB \): \[ A^2 = A \cdot A = \left( \begin{array}{ll} 1 & 2 \\ 3 & 0 \end{array} \right) \cdot \left( \begin{array}{ll} 1 & 2 \\ 3 & 0 \end{array} \right) = \left( \begin{array}{ll} 1 \cdot 1 + 2 \cdot 3 & 1 \cdot 2 + 2 \cdot 0 \\ 3 \cdot 1 + 0 \cdot 3 & 3 \cdot 2 + 0 \cdot 0 \end{array} \right) = \left( \begin{array}{ll} 7 & 2 \\ 3 & 6 \end{array} \right) \] \[ B^2 = B \cdot B = \left( \begin{array}{cc} 2 & -1 \\ 1 & 3 \end{array} \right) \cdot \left( \begin{array}{cc} 2 & -1 \\ 1 & 3 \end{array} \right) = \left( \begin{array}{cc} 2 \cdot 2 + (-1) \cdot 1 & 2 \cdot (-1) + (-1) \cdot 3 \\ 1 \cdot 2 + 3 \cdot 1 & 1 \cdot (-1) + 3 \cdot 3 \end{array} \right) = \left( \begin{array}{cc} 3 & -5 \\ 5 & 8 \end{array} \right) \] \[ AB = A \cdot B = \left( \begin{array}{ll} 1 & 2 \\ 3 & 0 \end{array} \right) \cdot \left( \begin{array}{cc} 2 & -1 \\ 1 & 3 \end{array} \right) = \left( \begin{array}{ll} 1 \cdot 2 + 2 \cdot 1 & 1 \cdot (-1) + 2 \cdot 3 \\ 3 \cdot 2 + 0 \cdot 1 & 3 \cdot (-1) + 0 \cdot 3 \end{array} \right) = \left( \begin{array}{ll} 4 & 5 \\ 6 & -3 \end{array} \right) \] Con todo esto podemos ahora evaluar las igualdades. **a)** \( (A+B)^2 = A^2 + 2AB + B^2 \) Primero, precisamos \( (A+B)^2 \): \[ (A + B)^2 = \left( \begin{array}{ll} 3 & 1 \\ 4 & 3 \end{array} \right) \cdot \left( \begin{array}{ll} 3 & 1 \\ 4 & 3 \end{array} \right) = \left( \begin{array}{ll} 3 \cdot 3 + 1 \cdot 4 & 3 \cdot 1 + 1 \cdot 3 \\ 4 \cdot 3 + 3 \cdot 4 & 4 \cdot 1 + 3 \cdot 3 \end{array} \right) = \left( \begin{array}{ll} 13 & 6 \\ 28 & 13 \end{array} \right) \] Lado derecho: \( A