Answer
**Summary of Subsets for Each Set:**
1. **Set \( A \):** 8 subsets
- \( \emptyset, \{\, d \,\}, \{\, O \,\}, \{\, g \,\}, \{\, d,\ O \,\}, \{\, d,\ g \,\}, \{\, O,\ g \,\}, \{\, d,\ O,\ g \,\} \)
2. **Set \( B \):** 32 subsets
- All possible combinations of the letters \( m, i, r, t, o \), including the empty set and the full set.
3. **Set \( C \):** 16 subsets
- \( \emptyset, \{\, p \,\}, \{\, a \,\}, \{\, e \,\}, \{\, r \,\}, \{\, p,\ a \,\}, \{\, p,\ e \,\}, \{\, p,\ r \,\}, \{\, a,\ e \,\}, \{\, a,\ r \,\}, \{\, e,\ r \,\}, \{\, p,\ a,\ e \,\}, \{\, p,\ a,\ r \,\}, \{\, p,\ e,\ r \,\}, \{\, a,\ e,\ r \,\}, \{\, p,\ a,\ e,\ r \,\} \)
4. **Set \( D \):** 64 subsets
- All possible combinations of the numbers 1 through 6, including the empty set and the full set.
5. **Set \( E \):** 32 subsets
- All possible combinations of the letters \( s, m, a, r, t \), including the empty set and the full set.
**Total Subsets:**
- \( A: 8 \)
- \( B: 32 \)
- \( C: 16 \)
- \( D: 64 \)
- \( E: 32 \)
**Note:** For larger sets like \( D \) and \( E \), it's practical to understand the pattern of subset formation rather than listing every single subset.
Solution
Certainly! Let's tackle each part of Exercise 2 step by step. For each set, we'll determine the number of possible subsets and then list (expand) those subsets.
---
### **1. Set \( A \): The word 'dOg'**
**a. Determine the Set \( A \):**
The word 'dOg' consists of the letters:
- **d**
- **O**
- **g**
Since sets contain **unique elements**, repeated letters are listed only once. Here, all letters are unique.
\[
A = \{\, d,\ O,\ g \,\}
\]
**b. Number of Subsets:**
For a set with \( n \) elements, the number of possible subsets is \( 2^n \).
\[
n = 3 \Rightarrow 2^3 = 8 \text{ subsets}
\]
**c. Listing All Subsets of \( A \):**
1. **Empty Set:** \( \emptyset \)
2. **Single-element subsets:**
- \( \{\, d \,\} \)
- \( \{\, O \,\} \)
- \( \{\, g \,\} \)
3. **Two-element subsets:**
- \( \{\, d,\ O \,\} \)
- \( \{\, d,\ g \,\} \)
- \( \{\, O,\ g \,\} \)
4. **Three-element subset:**
- \( \{\, d,\ O,\ g \,\} \)
**_Total Subsets:_** 8
---
### **2. Set \( B \): The word 'mirtor'**
**a. Determine the Set \( B \):**
The word 'mirtor' consists of the letters:
- **m**
- **i**
- **r**
- **t**
- **o**
- **r**
Notice that the letter **r** appears twice. Since sets contain unique elements:
\[
B = \{\, m,\ i,\ r,\ t,\ o \,\}
\]
**b. Number of Subsets:**
\[
n = 5 \Rightarrow 2^5 = 32 \text{ subsets}
\]
**c. Listing All Subsets of \( B \):**
Listing all 32 subsets here would be extensive, but they include:
- The empty set \( \emptyset \)
- All single-element subsets like \( \{\, m \,\} \), \( \{\, i \,\} \), etc.
- All two-element subsets like \( \{\, m,\ i \,\} \), \( \{\, m,\ r \,\} \), etc.
- Continuing up to the full set \( \{\, m,\ i,\ r,\ t,\ o \,\} \)
**_Total Subsets:_** 32
---
### **3. Set \( C \): The word 'paper'**
**a. Determine the Set \( C \):**
The word 'paper' consists of the letters:
- **p**
- **a**
- **p**
- **e**
- **r**
The letter **p** appears twice. So, the unique elements are:
\[
C = \{\, p,\ a,\ e,\ r \,\}
\]
**b. Number of Subsets:**
\[
n = 4 \Rightarrow 2^4 = 16 \text{ subsets}
\]
**c. Listing All Subsets of \( C \):**
1. **Empty Set:** \( \emptyset \)
2. **Single-element subsets:**
- \( \{\, p \,\} \)
- \( \{\, a \,\} \)
- \( \{\, e \,\} \)
- \( \{\, r \,\} \)
3. **Two-element subsets:**
- \( \{\, p,\ a \,\} \)
- \( \{\, p,\ e \,\} \)
- \( \{\, p,\ r \,\} \)
- \( \{\, a,\ e \,\} \)
- \( \{\, a,\ r \,\} \)
- \( \{\, e,\ r \,\} \)
4. **Three-element subsets:**
- \( \{\, p,\ a,\ e \,\} \)
- \( \{\, p,\ a,\ r \,\} \)
- \( \{\, p,\ e,\ r \,\} \)
- \( \{\, a,\ e,\ r \,\} \)
5. **Four-element subset:**
- \( \{\, p,\ a,\ e,\ r \,\} \)
**_Total Subsets:_** 16
---
### **4. Set \( D = \{1, 2, 3, 4, 5, 6\} \)**
**a. Determine the Set \( D \):**
\[
D = \{\,1,\ 2,\ 3,\ 4,\ 5,\ 6\,\}
\]
**b. Number of Subsets:**
\[
n = 6 \Rightarrow 2^6 = 64 \text{ subsets}
\]
**c. Listing All Subsets of \( D \):**
Listing all 64 subsets is lengthy. Here's the structure:
- **Empty Set:** \( \emptyset \)
- **Single-element subsets:** 6 subsets (e.g., \( \{\,1\,\} \), \( \{\,2\,\} \), ...)
- **Two-element subsets:** \( \binom{6}{2} = 15 \) subsets
- **Three-element subsets:** \( \binom{6}{3} = 20 \) subsets
- **Four-element subsets:** \( \binom{6}{4} = 15 \) subsets
- **Five-element subsets:** \( \binom{6}{5} = 6 \) subsets
- **Six-element subset:** \( \{\,1,\ 2,\ 3,\ 4,\ 5,\ 6\,\} \)
**_Total Subsets:_** 64
---
### **5. Set \( E = \{s, m, a, r, t\} \)**
**a. Determine the Set \( E \):**
\[
E = \{\, s,\ m,\ a,\ r,\ t \,\}
\]
**b. Number of Subsets:**
\[
n = 5 \Rightarrow 2^5 = 32 \text{ subsets}
\]
**c. Listing All Subsets of \( E \):**
Similar to Set \( B \), listing all 32 subsets here would be extensive. They include:
- The empty set \( \emptyset \)
- All single-element subsets like \( \{\, s \,\} \), \( \{\, m \,\} \), etc.
- All two-element subsets like \( \{\, s,\ m \,\} \), \( \{\, s,\ a \,\} \), etc.
- Continuing up to the full set \( \{\, s,\ m,\ a,\ r,\ t \,\} \)
**_Total Subsets:_** 32
---
**Summary Table:**
| Set | Elements | Number of Subsets |
|-----|----------|-------------------|
| \( A \) | \( \{\, d,\ O,\ g \,\} \) | 8 |
| \( B \) | \( \{\, m,\ i,\ r,\ t,\ o \,\} \) | 32 |
| \( C \) | \( \{\, p,\ a,\ e,\ r \,\} \) | 16 |
| \( D \) | \( \{\,1, 2, 3, 4, 5, 6\,\} \) | 64 |
| \( E \) | \( \{\, s,\ m,\ a,\ r,\ t \,\} \) | 32 |
---
**Note:** For larger sets like \( D \) and \( E \), it's practical to understand the pattern of subset formation rather than listing every single subset.