Pregunta
upstudy study bank question image url

Exercise 2 Direction: Given the following items below, identify the number of subsets then expand. 1. Let \( A \) be the set of the word ' \( \mathrm{dOg}^{\prime} \) '. 2. Let \( B \) be the set of the word 'mirtor'. 3. Let \( C \) be the set of the word 'paper'. 4. \( D=\{1,2,3,4,5,6\} \) 5. \( E=(s, m, a, r, t) \)

Ask by Page Vargas. in the Philippines
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Summary of Subsets for Each Set:** 1. **Set \( A \):** 8 subsets - \( \emptyset, \{\, d \,\}, \{\, O \,\}, \{\, g \,\}, \{\, d,\ O \,\}, \{\, d,\ g \,\}, \{\, O,\ g \,\}, \{\, d,\ O,\ g \,\} \) 2. **Set \( B \):** 32 subsets - All possible combinations of the letters \( m, i, r, t, o \), including the empty set and the full set. 3. **Set \( C \):** 16 subsets - \( \emptyset, \{\, p \,\}, \{\, a \,\}, \{\, e \,\}, \{\, r \,\}, \{\, p,\ a \,\}, \{\, p,\ e \,\}, \{\, p,\ r \,\}, \{\, a,\ e \,\}, \{\, a,\ r \,\}, \{\, e,\ r \,\}, \{\, p,\ a,\ e \,\}, \{\, p,\ a,\ r \,\}, \{\, p,\ e,\ r \,\}, \{\, a,\ e,\ r \,\}, \{\, p,\ a,\ e,\ r \,\} \) 4. **Set \( D \):** 64 subsets - All possible combinations of the numbers 1 through 6, including the empty set and the full set. 5. **Set \( E \):** 32 subsets - All possible combinations of the letters \( s, m, a, r, t \), including the empty set and the full set. **Total Subsets:** - \( A: 8 \) - \( B: 32 \) - \( C: 16 \) - \( D: 64 \) - \( E: 32 \) **Note:** For larger sets like \( D \) and \( E \), it's practical to understand the pattern of subset formation rather than listing every single subset.

Solución

Certainly! Let's tackle each part of Exercise 2 step by step. For each set, we'll determine the number of possible subsets and then list (expand) those subsets. --- ### **1. Set \( A \): The word 'dOg'** **a. Determine the Set \( A \):** The word 'dOg' consists of the letters: - **d** - **O** - **g** Since sets contain **unique elements**, repeated letters are listed only once. Here, all letters are unique. \[ A = \{\, d,\ O,\ g \,\} \] **b. Number of Subsets:** For a set with \( n \) elements, the number of possible subsets is \( 2^n \). \[ n = 3 \Rightarrow 2^3 = 8 \text{ subsets} \] **c. Listing All Subsets of \( A \):** 1. **Empty Set:** \( \emptyset \) 2. **Single-element subsets:** - \( \{\, d \,\} \) - \( \{\, O \,\} \) - \( \{\, g \,\} \) 3. **Two-element subsets:** - \( \{\, d,\ O \,\} \) - \( \{\, d,\ g \,\} \) - \( \{\, O,\ g \,\} \) 4. **Three-element subset:** - \( \{\, d,\ O,\ g \,\} \) **_Total Subsets:_** 8 --- ### **2. Set \( B \): The word 'mirtor'** **a. Determine the Set \( B \):** The word 'mirtor' consists of the letters: - **m** - **i** - **r** - **t** - **o** - **r** Notice that the letter **r** appears twice. Since sets contain unique elements: \[ B = \{\, m,\ i,\ r,\ t,\ o \,\} \] **b. Number of Subsets:** \[ n = 5 \Rightarrow 2^5 = 32 \text{ subsets} \] **c. Listing All Subsets of \( B \):** Listing all 32 subsets here would be extensive, but they include: - The empty set \( \emptyset \) - All single-element subsets like \( \{\, m \,\} \), \( \{\, i \,\} \), etc. - All two-element subsets like \( \{\, m,\ i \,\} \), \( \{\, m,\ r \,\} \), etc. - Continuing up to the full set \( \{\, m,\ i,\ r,\ t,\ o \,\} \) **_Total Subsets:_** 32 --- ### **3. Set \( C \): The word 'paper'** **a. Determine the Set \( C \):** The word 'paper' consists of the letters: - **p** - **a** - **p** - **e** - **r** The letter **p** appears twice. So, the unique elements are: \[ C = \{\, p,\ a,\ e,\ r \,\} \] **b. Number of Subsets:** \[ n = 4 \Rightarrow 2^4 = 16 \text{ subsets} \] **c. Listing All Subsets of \( C \):** 1. **Empty Set:** \( \emptyset \) 2. **Single-element subsets:** - \( \{\, p \,\} \) - \( \{\, a \,\} \) - \( \{\, e \,\} \) - \( \{\, r \,\} \) 3. **Two-element subsets:** - \( \{\, p,\ a \,\} \) - \( \{\, p,\ e \,\} \) - \( \{\, p,\ r \,\} \) - \( \{\, a,\ e \,\} \) - \( \{\, a,\ r \,\} \) - \( \{\, e,\ r \,\} \) 4. **Three-element subsets:** - \( \{\, p,\ a,\ e \,\} \) - \( \{\, p,\ a,\ r \,\} \) - \( \{\, p,\ e,\ r \,\} \) - \( \{\, a,\ e,\ r \,\} \) 5. **Four-element subset:** - \( \{\, p,\ a,\ e,\ r \,\} \) **_Total Subsets:_** 16 --- ### **4. Set \( D = \{1, 2, 3, 4, 5, 6\} \)** **a. Determine the Set \( D \):** \[ D = \{\,1,\ 2,\ 3,\ 4,\ 5,\ 6\,\} \] **b. Number of Subsets:** \[ n = 6 \Rightarrow 2^6 = 64 \text{ subsets} \] **c. Listing All Subsets of \( D \):** Listing all 64 subsets is lengthy. Here's the structure: - **Empty Set:** \( \emptyset \) - **Single-element subsets:** 6 subsets (e.g., \( \{\,1\,\} \), \( \{\,2\,\} \), ...) - **Two-element subsets:** \( \binom{6}{2} = 15 \) subsets - **Three-element subsets:** \( \binom{6}{3} = 20 \) subsets - **Four-element subsets:** \( \binom{6}{4} = 15 \) subsets - **Five-element subsets:** \( \binom{6}{5} = 6 \) subsets - **Six-element subset:** \( \{\,1,\ 2,\ 3,\ 4,\ 5,\ 6\,\} \) **_Total Subsets:_** 64 --- ### **5. Set \( E = \{s, m, a, r, t\} \)** **a. Determine the Set \( E \):** \[ E = \{\, s,\ m,\ a,\ r,\ t \,\} \] **b. Number of Subsets:** \[ n = 5 \Rightarrow 2^5 = 32 \text{ subsets} \] **c. Listing All Subsets of \( E \):** Similar to Set \( B \), listing all 32 subsets here would be extensive. They include: - The empty set \( \emptyset \) - All single-element subsets like \( \{\, s \,\} \), \( \{\, m \,\} \), etc. - All two-element subsets like \( \{\, s,\ m \,\} \), \( \{\, s,\ a \,\} \), etc. - Continuing up to the full set \( \{\, s,\ m,\ a,\ r,\ t \,\} \) **_Total Subsets:_** 32 --- **Summary Table:** | Set | Elements | Number of Subsets | |-----|----------|-------------------| | \( A \) | \( \{\, d,\ O,\ g \,\} \) | 8 | | \( B \) | \( \{\, m,\ i,\ r,\ t,\ o \,\} \) | 32 | | \( C \) | \( \{\, p,\ a,\ e,\ r \,\} \) | 16 | | \( D \) | \( \{\,1, 2, 3, 4, 5, 6\,\} \) | 64 | | \( E \) | \( \{\, s,\ m,\ a,\ r,\ t \,\} \) | 32 | --- **Note:** For larger sets like \( D \) and \( E \), it's practical to understand the pattern of subset formation rather than listing every single subset.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the number of subsets of a set, you can use the formula \( 2^n \), where \( n \) is the number of elements in the set. Let's break this down: 1. The word 'dOg' has 3 unique letters (d, o, g), so the number of subsets is \( 2^3 = 8 \) subsets. 2. The word 'mirtor' has 6 letters with 'r' repeating, treated as unique for subset formation, so the number of subsets is \( 2^6 = 64 \) subsets. 3. The word 'paper' has 5 letters with 'p' repeating, treated as unique here as well, giving \( 2^5 = 32 \) subsets. 4. Set \( D = \{1, 2, 3, 4, 5, 6\} \) has 6 elements, hence \( 2^6 = 64 \) subsets. 5. The set \( E = \{s, m, a, r, t\} \) encompasses 5 unique letters, yielding \( 2^5 = 32 \) subsets. In summary, each set has its unique flair and offers its own number of unique subsets, as calculated. Happy set exploring!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad