Untegrate the following \( \frac{\int(x-1)^{2}}{\left(x^{2}+1\right)^{2}} d x \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To integrate the given expression, we can use integration by parts or substitution, but let's look at another approach. The integral is \[ \int \frac{(x - 1)^2}{(x^2 + 1)^2} \, dx. \] First, we can expand the numerator: \[ (x - 1)^2 = x^2 - 2x + 1, \] which gives: \[ \int \frac{x^2 - 2x + 1}{(x^2 + 1)^2} \, dx = \int \frac{x^2}{(x^2 + 1)^2} \, dx - 2\int \frac{x}{(x^2 + 1)^2} \, dx + \int \frac{1}{(x^2 + 1)^2} \, dx. \] Now we can tackle each term one by one: 1. For the integral \( \int \frac{1}{(x^2 + 1)^2} \, dx \), we can use the fact that it evaluates to: \[ \int \frac{1}{(x^2 + 1)^2} \, dx = \frac{1}{2} \tan^{-1}(x) + C. \] 2. For \( \int \frac{x}{(x^2 + 1)^2} \, dx \), we can use the substitution \( u = x^2 + 1 \), \( du = 2x \, dx \): \[ \int \frac{x}{(x^2 + 1)^2} \, dx = \frac{1}{2} \int \frac{1}{u^2} \, du = -\frac{1}{2u} = -\frac{1}{2(x^2 + 1)}. \] 3. Now for the term \( \int \frac{x^2}{(x^2 + 1)^2} \, dx \): We can rewrite \( x^2 = (x^2 + 1) - 1 \), then: \[ \int \frac{x^2}{(x^2 + 1)^2} \, dx = \int \frac{(x^2 + 1) - 1}{(x^2 + 1)^2} \, dx = \int \frac{1}{x^2 + 1} \, dx - \int \frac{1}{(x^2 + 1)^2} \, dx. \] The first integral gives \( \tan^{-1}(x) \) and the second provides \( \frac{1}{2} \tan^{-1}(x) \). Putting this all together: \[ \int \frac{x^2}{(x^2 + 1)^2} \, dx = \tan^{-1}(x) - \frac{1}{2} \tan^{-1}(x) = \frac{1}{2} \tan^{-1}(x). \] Finally, we combine all parts: Putting everything back into the original equation gives: \[ \int \frac{(x - 1)^2}{(x^2 + 1)^2} \, dx = \frac{1}{2} \tan^{-1}(x) - 2\left(-\frac{1}{2(x^2 + 1)}\right) + \frac{1}{2} \tan^{-1}(x). \] Simplifying this results in: \[ \frac{1}{2} \tan^{-1}(x) + \frac{1}{x^2 + 1} + \frac{1}{2} \tan^{-1}(x) + C. \] Thus, the final answer is: \[ \int \frac{(x - 1)^{2}}{(x^{2} + 1)^{2}} \, dx = \tan^{-1}(x) + \frac{1}{x^2 + 1} + C. \]