Question
upstudy study bank question image url

obtenga la quinta de rivada de la sig funcion \( f(x)=\operatorname{sen}(3 x-2) \)

Ask by Ball Mann. in Mexico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La quinta derivada de \( f(x) = \sen(3x - 2) \) es \( 243\cos(3x - 2) \).

Solution

Para encontrar la quinta derivada de la función \( f(x) = \sen(3x - 2) \), seguimos los pasos de derivación sucesiva: 1. **Primera derivada:** \[ f'(x) = \frac{d}{dx} \sen(3x - 2) = 3\cos(3x - 2) \] 2. **Segunda derivada:** \[ f''(x) = \frac{d}{dx} [3\cos(3x - 2)] = -9\sen(3x - 2) \] 3. **Tercera derivada:** \[ f'''(x) = \frac{d}{dx} [-9\sen(3x - 2)] = -27\cos(3x - 2) \] 4. **Cuarta derivada:** \[ f''''(x) = \frac{d}{dx} [-27\cos(3x - 2)] = 81\sen(3x - 2) \] 5. **Quinta derivada:** \[ f^{(5)}(x) = \frac{d}{dx} [81\sen(3x - 2)] = 243\cos(3x - 2) \] **Resultado final:** \[ f^{(5)}(x) = 243\cos(3x - 2) \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Para obtener la quinta derivada de la función \( f(x) = \sin(3x - 2) \), primero recordemos que la derivada de la función seno es la función coseno. La forma general de la n-ésima derivada de \( \sin(kx) \) está relacionada con \( \sin \) y \( \cos \) alternando entre ambas. La primera derivada es: \[ f'(x) = 3\cos(3x - 2) \] La segunda derivada es: \[ f''(x) = -9\sin(3x - 2) \] La tercera derivada es: \[ f'''(x) = -27\cos(3x - 2) \] La cuarta derivada es: \[ f^{(4)}(x) = 81\sin(3x - 2) \] Finalmente, la quinta derivada es: \[ f^{(5)}(x) = 243\cos(3x - 2) \] ¡Así que ahí la tienes! La quinta derivada de \( f(x) = \sin(3x - 2) \) es \( 243\cos(3x - 2) \).

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy