Question
upstudy study bank question image url

Evaluate the two improper integrals: a) \( \int_{0}^{\infty} e^{-4 x} d x \) (4 Marks) b) \( \int_{0}^{\infty} \frac{d x}{x^{2}+9} \) (5 Marks)

Ask by Herrera Vargas. in Kenya
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a) The integral is \( \frac{1}{4} \). b) The integral is \( \frac{\pi}{6} \).

Solution

Let's evaluate each improper integral step-by-step. ### a) \( \int_{0}^{\infty} e^{-4 x} \, dx \) This is a standard exponential integral. The general form is: \[ \int_{0}^{\infty} e^{-a x} \, dx = \frac{1}{a} \quad \text{for} \quad a > 0 \] Here, \( a = 4 \). Applying the formula: \[ \int_{0}^{\infty} e^{-4 x} \, dx = \frac{1}{4} \] **Answer:** \( \frac{1}{4} \) --- ### b) \( \int_{0}^{\infty} \frac{dx}{x^{2}+9} \) This integral resembles the standard form: \[ \int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a} \cdot \arctan\left(\frac{x}{a}\right) + C \] For the improper integral from 0 to ∞: \[ \int_{0}^{\infty} \frac{dx}{x^{2} + a^{2}} = \frac{1}{a} \cdot \left[ \frac{\pi}{2} - 0 \right] = \frac{\pi}{2a} \] Here, \( a^{2} = 9 \) so \( a = 3 \). Plugging in the value: \[ \int_{0}^{\infty} \frac{dx}{x^{2}+9} = \frac{\pi}{2 \times 3} = \frac{\pi}{6} \] **Answer:** \( \frac{\pi}{6} \) Answer: a) The integral is 1⁄4; b) The integral is equal to one sixth of π, that is π ⁄ 6.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To evaluate the given improper integrals, we'll solve them one at a time. a) For the integral \( \int_{0}^{\infty} e^{-4 x} dx \): This is an exponential integral. We can compute it as follows: \[ \int e^{-4 x} dx = -\frac{1}{4} e^{-4x} + C \] Now, we need to evaluate the definite integral from 0 to \( \infty \): \[ \int_{0}^{\infty} e^{-4 x} dx = \lim_{b \to \infty} \left( -\frac{1}{4} e^{-4x} \right) \Big|_{0}^{b} \] Evaluating the boundary terms: At \( b \to \infty \), \( e^{-4b} \to 0 \) and at \( x = 0 \), we have: \[ \left. -\frac{1}{4} e^{-4x} \right|_{0}^{b} = 0 - \left( -\frac{1}{4} e^{-0} \right) = 0 + \frac{1}{4} = \frac{1}{4} \] Therefore, \[ \int_{0}^{\infty} e^{-4 x} dx = \frac{1}{4}. \] b) For the integral \( \int_{0}^{\infty} \frac{dx}{x^{2}+9} \): This integral can also be evaluated using the formula for the arctangent function. Recall the integral: \[ \int \frac{dx}{x^{2}+a^{2}} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] In our case, \( a = 3 \) (since \( 9 = 3^2 \)). Thus, we have: \[ \int \frac{dx}{x^{2}+9} = \frac{1}{3} \tan^{-1} \left( \frac{x}{3} \right) + C \] Now evaluate the definite integral: \[ \int_{0}^{\infty} \frac{dx}{x^{2}+9} = \lim_{b \to \infty} \left( \frac{1}{3} \tan^{-1} \left( \frac{x}{3} \right) \right) \Big|_{0}^{b} \] Evaluating the limits: At \( b \to \infty \), \( \tan^{-1} \left( \frac{b}{3} \right) \to \frac{\pi}{2} \) and at \( x = 0 \), we have: \[ = \frac{1}{3} \left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{6} \] Thus, \[ \int_{0}^{\infty} \frac{dx}{x^{2}+9} = \frac{\pi}{6}. \] In summary, the values of the integrals are: a) \( \int_{0}^{\infty} e^{-4 x} dx = \frac{1}{4} \) b) \( \int_{0}^{\infty} \frac{dx}{x^{2}+9} = \frac{\pi}{6} \)

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy