Find the general solution of the given second-order differential equation. \[ 2 y^{\prime \prime}-5 y^{\prime}+6 y=0 \] \( y(x)=\square \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To solve the given second-order differential equation, we start by writing the characteristic equation associated with it. The equation is: \[ 2 r^2 - 5 r + 6 = 0 \] Using the quadratic formula, \( r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2 \), \( b = -5 \), and \( c = 6 \): \[ r = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot 6}}{2 \cdot 2} \] \[ r = \frac{5 \pm \sqrt{25 - 48}}{4} \] \[ r = \frac{5 \pm \sqrt{-23}}{4} \] Since the discriminant is negative, we find complex roots: \[ r = \frac{5}{4} \pm \frac{\sqrt{23}}{4} i \] Now we can express the general solution: \[ y(x) = e^{\frac{5}{4}x} \left( C_1 \cos\left(\frac{\sqrt{23}}{4} x\right) + C_2 \sin\left(\frac{\sqrt{23}}{4} x\right) \right) \] Therefore, the general solution is: \[ y(x) = e^{\frac{5}{4}x} \left( C_1 \cos\left(\frac{\sqrt{23}}{4} x\right) + C_2 \sin\left(\frac{\sqrt{23}}{4} x\right) \right) \]