Question
upstudy study bank question image url

12. \( \int_{1}^{e} x^{4} \ln x d x \)

Ask by Campos Conner. in the United States
Jan 19,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral of \( x^{4} \ln x \) from 1 to \( e \) is \( \frac{4e^{5}+1}{25} \).

Solution

Calculate the integral \( \int_{1}^{e} x^{4} \ln x dx \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int_{1}^{e} x^{4}\ln{\left(x\right)} dx\) - step1: Evaluate the integral: \(\int x^{4}\ln{\left(x\right)} dx\) - step2: Prepare for integration by parts: \(\begin{align}&u=\ln{\left(x\right)}\\&dv=x^{4}dx\end{align}\) - step3: Calculate the derivative: \(\begin{align}&du=\frac{1}{x}dx\\&dv=x^{4}dx\end{align}\) - step4: Evaluate the integral: \(\begin{align}&du=\frac{1}{x}dx\\&v=\frac{x^{5}}{5}\end{align}\) - step5: Substitute the values into formula: \(\ln{\left(x\right)}\times \frac{x^{5}}{5}-\int \frac{1}{x}\times \frac{x^{5}}{5} dx\) - step6: Calculate: \(\frac{x^{5}\ln{\left(x\right)}}{5}-\int \frac{x^{4}}{5} dx\) - step7: Evaluate the integral: \(\frac{x^{5}\ln{\left(x\right)}}{5}-\frac{x^{5}}{25}\) - step8: Simplify the expression: \(\frac{1}{5}x^{5}\ln{\left(x\right)}-\frac{x^{5}}{25}\) - step9: Return the limits: \(\left(\frac{1}{5}x^{5}\ln{\left(x\right)}-\frac{x^{5}}{25}\right)\bigg |_{1}^{e}\) - step10: Calculate the value: \(\frac{4e^{5}+1}{25}\) The integral of \(x^{4} \ln x\) from 1 to \(e\) is \(\frac{4e^{5}+1}{25}\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To solve the integral \( \int_{1}^{e} x^{4} \ln x \, dx \), we can use integration by parts. Let's set \( u = \ln x \) which gives us \( du = \frac{1}{x} dx \) or \( dx = x \, du \). We can also let \( dv = x^4 \, dx \), leading to \( v = \frac{x^5}{5} \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] we have: \[ \int x^4 \ln x \, dx = \ln x \cdot \frac{x^5}{5} - \int \frac{x^5}{5} \cdot \frac{1}{x} \, dx \] \[ = \ln x \cdot \frac{x^5}{5} - \frac{1}{5} \int x^4 \, dx \] Calculating \( \int x^4 \, dx \), gives us \( \frac{x^5}{5} \). Therefore, we can substitute this back into our equation: \[ = \ln x \cdot \frac{x^5}{5} - \frac{1}{5} \cdot \frac{x^5}{5} = \ln x \cdot \frac{x^5}{5} - \frac{x^5}{25} \] Now, we need to evaluate this expression from \( 1 \) to \( e \). \[ \left[ \ln x \cdot \frac{x^5}{5} - \frac{x^5}{25} \right]_{1}^{e} \] Calculating at the bounds: At \( x = e \): \[ \ln(e) \cdot \frac{e^5}{5} - \frac{e^5}{25} = \frac{e^5}{5} - \frac{e^5}{25} = \frac{5e^5}{25} - \frac{e^5}{25} = \frac{4e^5}{25} \] At \( x = 1 \): \[ \ln(1) \cdot \frac{1^5}{5} - \frac{1^5}{25} = 0 - \frac{1}{25} = -\frac{1}{25} \] Now we combine these results: \[ \frac{4e^5}{25} - \left( -\frac{1}{25} \right) = \frac{4e^5}{25} + \frac{1}{25} = \frac{4e^5 + 1}{25} \] Thus, the final answer is: \[ \int_{1}^{e} x^{4} \ln x \, dx = \frac{4e^5 + 1}{25} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy