Question
upstudy study bank question image url

24. \( \cos (x y)+\sin y=x y \quad \) 25. \( 2 x e^{x}+2 y e^{y}=4 \) 26. If \( f(x)+x^{2}[f(x)]^{3}=10 \) and \( f(1)=2 \), find \( f^{\prime}(1) \). 27. If \( g(x)+x \sin g(x)=x^{2} \), find \( g^{\prime}(0) \). Assume \( y \) is the independent variable and \( x \) is the dependent variable and use implicit differentiation to find \( \frac{d x}{d y} \). 28. \( x^{4} y^{2}-x^{3} y+2 x y^{3}=0 \) 29. \( y \sec x=x \tan y \) Use implicit differentiation to find an equation of the tangent line to the curve at the given point. 30. \( x^{2} y+2 x=15, \quad(3,1) \) 31. \( y \sin 2 x=x \cos 2 y, \quad\left(\frac{\pi}{2}, \frac{\pi}{4}\right) \) 32. \( \sin (x+y)=2 x-2 y, \quad(\pi, \pi) \) 33. \( x^{2}-x y-y^{2}=1, \quad(2,1) \) 34. \( x^{2}+2 x y+4 y^{2}=12, \quad(2,1) \)

Ask by Mccarthy Marsh. in Colombia
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

### Problema 26 La derivada de \( f(x) \) en \( x = 1 \) es \( f'(1) = -\frac{16}{13} \). ### Problema 27 La derivada de \( g(x) \) en \( x = 0 \) es \( g'(0) = 0 \). ### Problema 30 La pendiente de la recta tangente en \( (3,1) \) es \( \frac{dy}{dx} = -\frac{8}{9} \). ### Problema 33 La pendiente de la recta tangente en \( (2,1) \) es \( \frac{dy}{dx} = \frac{3}{4} \). ### Problema 34 La pendiente de la recta tangente en \( (2,1) \) es \( \frac{dy}{dx} = -\frac{3}{10} \).

Solution

Solve the equation by following steps: - step0: Solve for \(y\): \(x^{2}y+2x=15\) - step1: Move the expression to the right side: \(x^{2}y=15-2x\) - step2: Divide both sides: \(\frac{x^{2}y}{x^{2}}=\frac{15-2x}{x^{2}}\) - step3: Divide the numbers: \(y=\frac{15-2x}{x^{2}}\) Solve the equation \( x^{2}-xy-y^{2}=1 \). Solve the equation by following steps: - step0: Solve for \(y\): \(x^{2}-xy-y^{2}=1\) - step1: Move the expression to the left side: \(x^{2}-xy-y^{2}-1=0\) - step2: Simplify: \(x^{2}-1-xy-y^{2}=0\) - step3: Rewrite in standard form: \(-y^{2}-xy+x^{2}-1=0\) - step4: Multiply both sides: \(y^{2}+xy-x^{2}+1=0\) - step5: Solve using the quadratic formula: \(y=\frac{-x\pm \sqrt{x^{2}-4\left(-x^{2}+1\right)}}{2}\) - step6: Simplify the expression: \(y=\frac{-x\pm \sqrt{5x^{2}-4}}{2}\) - step7: Separate into possible cases: \(\begin{align}&y=\frac{-x+\sqrt{5x^{2}-4}}{2}\\&y=\frac{-x-\sqrt{5x^{2}-4}}{2}\end{align}\) - step8: Rewrite the fraction: \(\begin{align}&y=\frac{-x+\sqrt{5x^{2}-4}}{2}\\&y=-\frac{x+\sqrt{5x^{2}-4}}{2}\end{align}\) Solve the equation \( x^{2}+2xy+4y^{2}=12 \). Solve the equation by following steps: - step0: Solve for \(y\): \(x^{2}+2xy+4y^{2}=12\) - step1: Move the expression to the left side: \(x^{2}+2xy+4y^{2}-12=0\) - step2: Simplify: \(x^{2}-12+2xy+4y^{2}=0\) - step3: Rewrite in standard form: \(4y^{2}+2xy+x^{2}-12=0\) - step4: Solve using the quadratic formula: \(y=\frac{-2x\pm \sqrt{\left(2x\right)^{2}-4\times 4\left(x^{2}-12\right)}}{2\times 4}\) - step5: Simplify the expression: \(y=\frac{-2x\pm \sqrt{\left(2x\right)^{2}-4\times 4\left(x^{2}-12\right)}}{8}\) - step6: Simplify the expression: \(y=\frac{-2x\pm \sqrt{-12x^{2}+192}}{8}\) - step7: Simplify the expression: \(y=\frac{-2x\pm 2\sqrt{48-3x^{2}}}{8}\) - step8: Separate into possible cases: \(\begin{align}&y=\frac{-2x+2\sqrt{48-3x^{2}}}{8}\\&y=\frac{-2x-2\sqrt{48-3x^{2}}}{8}\end{align}\) - step9: Simplify the expression: \(\begin{align}&y=\frac{-x+\sqrt{48-3x^{2}}}{4}\\&y=\frac{-2x-2\sqrt{48-3x^{2}}}{8}\end{align}\) - step10: Simplify the expression: \(\begin{align}&y=\frac{-x+\sqrt{48-3x^{2}}}{4}\\&y=-\frac{x+\sqrt{48-3x^{2}}}{4}\end{align}\) Vamos a resolver los problemas uno por uno, extrayendo las condiciones conocidas y utilizando la diferenciación implícita donde sea necesario. ### Problema 24 **Ecuación:** \( \cos (xy) + \sin y = xy \) No se encontró una solución directa para esta ecuación. ### Problema 25 **Ecuación:** \( 2xe^{x} + 2ye^{y} = 4 \) No se encontró una solución directa para esta ecuación. ### Problema 26 **Ecuación:** \( f(x) + x^{2}[f(x)]^{3} = 10 \) y \( f(1) = 2 \) Para encontrar \( f'(1) \), aplicamos la diferenciación implícita: 1. Derivamos ambos lados respecto a \( x \): \[ f'(x) + 2x f(x)^{3} + 3x^{2} f(x)^{2} f'(x) = 0 \] 2. Sustituyendo \( x = 1 \) y \( f(1) = 2 \): \[ f'(1) + 2(1)(2)^{3} + 3(1)^{2}(2)^{2} f'(1) = 0 \] \[ f'(1) + 16 + 12 f'(1) = 0 \] \[ 13 f'(1) = -16 \implies f'(1) = -\frac{16}{13} \] ### Problema 27 **Ecuación:** \( g(x) + x \sin g(x) = x^{2} \) Para encontrar \( g'(0) \): 1. Derivamos ambos lados respecto a \( x \): \[ g'(x) + \sin g(x) + x \cos g(x) g'(x) = 2x \] 2. Evaluamos en \( x = 0 \): \[ g'(0) + \sin g(0) = 0 \] Asumiendo \( g(0) = 0 \) (ya que \( g(0) + 0 = 0 \)), tenemos: \[ g'(0) + 0 = 0 \implies g'(0) = 0 \] ### Problema 28 **Ecuación:** \( x^{4}y^{2} - x^{3}y + 2xy^{3} = 0 \) No se encontró una solución directa para esta ecuación. ### Problema 29 **Ecuación:** \( y \sec x = x \tan y \) Para encontrar la derivada implícita: 1. Derivamos ambos lados respecto a \( x \): \[ \sec x \tan x \frac{dy}{dx} + y \sec x \tan x = \tan y + x \sec^{2} y \frac{dy}{dx} \] 2. Reorganizamos para encontrar \( \frac{dy}{dx} \). No se encontró una solución directa para esta ecuación. ### Problema 30 **Ecuación:** \( x^{2}y + 2x = 15 \) en el punto \( (3,1) \) 1. Derivamos: \[ 2xy + x^{2} \frac{dy}{dx} + 2 = 0 \] 2. Sustituyendo \( (3,1) \): \[ 2(3)(1) + 3^{2} \frac{dy}{dx} + 2 = 0 \implies 6 + 9 \frac{dy}{dx} + 2 = 0 \] \[ 9 \frac{dy}{dx} = -8 \implies \frac{dy}{dx} = -\frac{8}{9} \] ### Problema 31 **Ecuación:** \( y \sin 2x = x \cos 2y \) en el punto \( \left(\frac{\pi}{2}, \frac{\pi}{4}\right) \) 1. Derivamos: \[ \sin 2x \frac{dy}{dx} + 2y \cos 2x = \cos 2y \frac{dy}{dx} - 2x \sin 2y \frac{dy}{dx} \] 2. Sustituyendo \( \left(\frac{\pi}{2}, \frac{\pi}{4}\right) \) y resolviendo para \( \frac{dy}{dx} \). No se encontró una solución directa para esta ecuación. ### Problema 32 **Ecuación:** \( \sin (x+y) = 2x - 2y \) en el punto \( (\pi, \pi) \) 1. Derivamos: \[ \cos(x+y) \left(1 + \frac{dy}{dx}\right) = 2 - 2 \frac{dy}{dx} \] 2. Sustituyendo \( (\pi, \pi) \) y resolviendo para \( \frac{dy}{dx} \). No se encontró una solución directa para esta ecuación. ### Problema 33 **Ecuación:** \( x^{2} - xy - y^{2} = 1 \) en el punto \( (2,1) \) 1. Derivamos: \[ 2x - y - x \frac{dy}{dx} - 2y \frac{dy}{dx} = 0 \] 2. Sustituyendo \( (2,1) \): \[ 4 - 1 - 2 \frac{dy}{dx} - 2 \frac{dy}{dx} = 0 \implies 3 = 4 \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{3}{4} \] ### Problema 34 **Ecuación:** \( x^{2} + 2xy + 4y^{2} = 12 \) en el punto \( (2,1) \) 1. Derivamos: \[ 2x + 2y + 2x \frac{dy}{dx} + 8y \frac{dy}{dx} = 0 \] 2. Sustituyendo \( (2,1) \): \[ 4 + 2 + 2(2) \frac{dy}{dx} + 8(1) \frac{dy}{dx} = 0 \implies 6 + 20 \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{3}{10} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Did you know that implicit differentiation allows us to tackle relationships where \( y \) is entwined with \( x \) in mysterious ways? This technique, developed in the 17th century by mathematicians like Leibniz and Newton, lets us explore curves that can’t easily be solved for one variable in terms of the other. By treating all variables as dependent, we can unveil the connections between them without needing to isolate them completely! Ever puzzled over a tricky equation? Here’s a tip: when using implicit differentiation, always remember to carefully apply the chain rule. A common mistake is forgetting to differentiate the dependent variable, \( x \), when \( y \) is being considered as a function of \( y \). Also, don't rush — taking your time to set up your derivatives correctly will save you from headaches later on!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy