Question
upstudy study bank question image url

9 Distance, Midpoint and \( 1 \leftarrow \quad \)\begin{tabular}{l} Complete the square and write the given equation in standard form. Then give the center and \\ radius of the circle and graph the equation. \\ \hline\end{tabular} \( x^{2}+y^{2}+4 x+6 y+12=0 \)

Ask by Moran Joseph. in the United States
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The equation \( x^{2} + y^{2} + 4x + 6y + 12 = 0 \) can be rewritten in standard form as \( (x + 2)^{2} + (y + 3)^{2} = 1 \). This represents a circle with center at \((-2, -3)\) and a radius of 1 unit.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

To rewrite the given equation in standard form, we need to complete the square for both the \(x\) and \(y\) terms. Starting with the original equation: \[ x^{2} + y^{2} + 4x + 6y + 12 = 0 \] We can rearrange it: \[ x^{2} + 4x + y^{2} + 6y = -12 \] Now, completing the square for \(x\): Take the coefficient of \(x\), which is \(4\), divide by \(2\) to get \(2\), and square it to get \(4\). We then rewrite: \[ (x^2 + 4x + 4) \rightarrow (x + 2)^{2} \] Next, for \(y\): Take the coefficient of \(y\), which is \(6\), divide by \(2\) to get \(3\), and square it to get \(9\). We then rewrite: \[ (y^2 + 6y + 9) \rightarrow (y + 3)^{2} \] Now, we add these squares to the other side of the equation: \[ (x + 2)^{2} + (y + 3)^{2} = -12 + 4 + 9\] This simplifies to: \[ (x + 2)^{2} + (y + 3)^{2} = 1 \] Now we have the equation in standard form, which represents a circle. The center of the circle is at \((-2, -3)\) and the radius is \(\sqrt{1} = 1\). To graph the equation, plot the center at \((-2, -3)\) and draw a circle with a radius of \(1\), which will touch the points at \((-3, -3)\), \((-1, -3)\), \(-2, -2)\), and \((-2, -4)\). Happy graphing!

Related Questions

Exercice 5: 1. On considère l'algorithme ci-contre a. On entre 7 pour \( x_{\mathrm{B}} \) et 17 pour \( y_{\mathrm{B}} \). Quelle est la valeur affichée en sortie? \( \sqrt{(x B+1)^{2}+(y B-2)^{2}} \) Variables Entrée Traitement Sortie \( x_{\mathrm{B}}, y_{\mathrm{B}} \) et \( d \) sont des nombres reels Demander les valeurs de \( x_{8} \) et \( y_{B} \) Affecter à \( d \) la valeur \( \sqrt{\left(x_{\mathrm{B}}+1\right)^{2}+\left(y_{\mathrm{B}}-2\right)^{2}} \) Afficher \( d \) pour \( x B=7 \) et \( y B=17 \) cela donne 17 b. Quel est le rôle de cet algorithme ? 2. On se place dans un repère orthonormé et on considère le cercle \( (\mathcal{C}) \) de centre \( \mathrm{A}(-1 ; 2) \) et de rayon 5 . a. Le point \( E \) de coordonnées \( (7 ; 17) \) appartient-il au cercle ( \( \mathcal{C} \) ) ? b. Modifier l'algorithme précédent pour qu'il affiche «oui» si le point \( \mathrm{B}\left(x_{\mathrm{B}} ; y_{\mathrm{B}}\right) \) appartient au cercle ( \( \mathcal{C} \) ) et « non» si le point B n'appartient pas à ce cercle. Exercice 6: Un automobiliste roule d'abord à \( 90 \mathrm{~km} / \mathrm{h} \) pendant deux heures, puis roule à \( 120 \mathrm{~km} / \mathrm{h} \). On veut élaborer le programme d'une fonction retournant la distance qu'il a parcourue, en kilomètres, au bout d'un temps t exprimé en heures. 1. Calculer la distance parcourue dans chacun des cas suivants : a. \( \mathrm{t}=1,5 \mathrm{~h} \) b. \( \mathrm{t}=3,5 \mathrm{~h} \)
Geometry France Feb 04, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy