9 Distance, Midpoint and \( 1 \leftarrow \quad \)\begin{tabular}{l} Complete the square and write the given equation in standard form. Then give the center and \\ radius of the circle and graph the equation. \\ \hline\end{tabular} \( x^{2}+y^{2}+4 x+6 y+12=0 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To rewrite the given equation in standard form, we need to complete the square for both the \(x\) and \(y\) terms. Starting with the original equation: \[ x^{2} + y^{2} + 4x + 6y + 12 = 0 \] We can rearrange it: \[ x^{2} + 4x + y^{2} + 6y = -12 \] Now, completing the square for \(x\): Take the coefficient of \(x\), which is \(4\), divide by \(2\) to get \(2\), and square it to get \(4\). We then rewrite: \[ (x^2 + 4x + 4) \rightarrow (x + 2)^{2} \] Next, for \(y\): Take the coefficient of \(y\), which is \(6\), divide by \(2\) to get \(3\), and square it to get \(9\). We then rewrite: \[ (y^2 + 6y + 9) \rightarrow (y + 3)^{2} \] Now, we add these squares to the other side of the equation: \[ (x + 2)^{2} + (y + 3)^{2} = -12 + 4 + 9\] This simplifies to: \[ (x + 2)^{2} + (y + 3)^{2} = 1 \] Now we have the equation in standard form, which represents a circle. The center of the circle is at \((-2, -3)\) and the radius is \(\sqrt{1} = 1\). To graph the equation, plot the center at \((-2, -3)\) and draw a circle with a radius of \(1\), which will touch the points at \((-3, -3)\), \((-1, -3)\), \(-2, -2)\), and \((-2, -4)\). Happy graphing!