Question
upstudy study bank question image url

If 9200 dollars is invested at an interest rate of 6 percent per year, find the value of the investment at the end of 5 years for the following compounding methods, to the nearest cent. (a) Annual: \( \$ \) (b) Semiannual: \( \$ \square \) (c) Monthly: \( \$ \) (d) Daily: \( \$ \)

Ask by Garza Love. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

- (a) Annual: \$12,311.68 - (b) Semiannual: \$12,364.03 - (c) Monthly: \$12,409.42 - (d) Daily: \$12,418.39

Solution

To find the value of the investment at the end of 5 years for different compounding methods, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. Given: - \( P = 9200 \) - \( r = 0.06 \) - \( t = 5 \) We will calculate \( A \) for each compounding method: 1. **Annual Compounding** (\( n = 1 \)) 2. **Semiannual Compounding** (\( n = 2 \)) 3. **Monthly Compounding** (\( n = 12 \)) 4. **Daily Compounding** (\( n = 365 \)) Let's calculate each case step by step. ### (a) Annual Compounding \[ A = 9200 \left(1 + \frac{0.06}{1}\right)^{1 \cdot 5} \] ### (b) Semiannual Compounding \[ A = 9200 \left(1 + \frac{0.06}{2}\right)^{2 \cdot 5} \] ### (c) Monthly Compounding \[ A = 9200 \left(1 + \frac{0.06}{12}\right)^{12 \cdot 5} \] ### (d) Daily Compounding \[ A = 9200 \left(1 + \frac{0.06}{365}\right)^{365 \cdot 5} \] Now, I will perform the calculations for each case. Calculate the value by following steps: - step0: Calculate: \(9200\left(1+\frac{0.06}{1}\right)^{1\times 5}\) - step1: Divide the terms: \(9200\left(1+\frac{3}{50}\right)^{1\times 5}\) - step2: Add the numbers: \(9200\left(\frac{53}{50}\right)^{1\times 5}\) - step3: Calculate: \(9200\left(\frac{53}{50}\right)^{5}\) - step4: Simplify: \(9200\times \frac{53^{5}}{50^{5}}\) - step5: Rewrite the expression: \(50\times 184\times \frac{53^{5}}{50^{5}}\) - step6: Reduce the numbers: \(184\times \frac{53^{5}}{50^{4}}\) - step7: Rewrite the expression: \(8\times 23\times \frac{53^{5}}{50^{4}}\) - step8: Rewrite the expression: \(8\times 23\times \frac{53^{5}}{2^{4}\times 25^{4}}\) - step9: Rewrite the expression: \(2^{3}\times 23\times \frac{53^{5}}{2^{4}\times 25^{4}}\) - step10: Reduce the numbers: \(23\times \frac{53^{5}}{2\times 25^{4}}\) - step11: Multiply the fractions: \(\frac{23\times 53^{5}}{2\times 25^{4}}\) Calculate or simplify the expression \( 9200 * (1 + 0.06/12)^(12*5) \). Calculate the value by following steps: - step0: Calculate: \(9200\left(1+\frac{0.06}{12}\right)^{12\times 5}\) - step1: Divide the terms: \(9200\left(1+\frac{1}{200}\right)^{12\times 5}\) - step2: Add the numbers: \(9200\left(\frac{201}{200}\right)^{12\times 5}\) - step3: Multiply the numbers: \(9200\left(\frac{201}{200}\right)^{60}\) - step4: Simplify: \(9200\times \frac{201^{60}}{200^{60}}\) - step5: Rewrite the expression: \(200\times 46\times \frac{201^{60}}{200^{60}}\) - step6: Reduce the numbers: \(46\times \frac{201^{60}}{200^{59}}\) - step7: Rewrite the expression: \(2\times 23\times \frac{201^{60}}{200^{59}}\) - step8: Rewrite the expression: \(2\times 23\times \frac{201^{60}}{8^{59}\times 25^{59}}\) - step9: Rewrite the expression: \(2\times 23\times \frac{201^{60}}{2^{177}\times 25^{59}}\) - step10: Reduce the numbers: \(23\times \frac{201^{60}}{2^{176}\times 25^{59}}\) - step11: Multiply the fractions: \(\frac{23\times 201^{60}}{2^{176}\times 25^{59}}\) Calculate or simplify the expression \( 9200 * (1 + 0.06/2)^(2*5) \). Calculate the value by following steps: - step0: Calculate: \(9200\left(1+\frac{0.06}{2}\right)^{2\times 5}\) - step1: Divide the terms: \(9200\left(1+\frac{3}{100}\right)^{2\times 5}\) - step2: Add the numbers: \(9200\left(\frac{103}{100}\right)^{2\times 5}\) - step3: Multiply the numbers: \(9200\left(\frac{103}{100}\right)^{10}\) - step4: Simplify: \(9200\times \frac{103^{10}}{100^{10}}\) - step5: Rewrite the expression: \(100\times 92\times \frac{103^{10}}{100^{10}}\) - step6: Reduce the numbers: \(92\times \frac{103^{10}}{100^{9}}\) - step7: Rewrite the expression: \(4\times 23\times \frac{103^{10}}{100^{9}}\) - step8: Rewrite the expression: \(4\times 23\times \frac{103^{10}}{4^{9}\times 25^{9}}\) - step9: Reduce the numbers: \(23\times \frac{103^{10}}{4^{8}\times 25^{9}}\) - step10: Multiply the fractions: \(\frac{23\times 103^{10}}{4^{8}\times 25^{9}}\) - step11: Evaluate the power: \(\frac{23\times 103^{10}}{65536\times 25^{9}}\) Calculate or simplify the expression \( 9200 * (1 + 0.06/365)^(365*5) \). Calculate the value by following steps: - step0: Calculate: \(9200\left(1+\frac{0.06}{365}\right)^{365\times 5}\) - step1: Divide the terms: \(9200\left(1+\frac{3}{18250}\right)^{365\times 5}\) - step2: Add the numbers: \(9200\left(\frac{18253}{18250}\right)^{365\times 5}\) - step3: Multiply the numbers: \(9200\left(\frac{18253}{18250}\right)^{1825}\) - step4: Simplify: \(9200\times \frac{18253^{1825}}{18250^{1825}}\) - step5: Rewrite the expression: \(50\times 184\times \frac{18253^{1825}}{18250^{1825}}\) - step6: Rewrite the expression: \(50\times 184\times \frac{18253^{1825}}{50^{1825}\times 365^{1825}}\) - step7: Reduce the numbers: \(184\times \frac{18253^{1825}}{50^{1824}\times 365^{1825}}\) - step8: Rewrite the expression: \(8\times 23\times \frac{18253^{1825}}{50^{1824}\times 365^{1825}}\) - step9: Rewrite the expression: \(8\times 23\times \frac{18253^{1825}}{2^{1824}\times 25^{1824}\times 365^{1825}}\) - step10: Rewrite the expression: \(2^{3}\times 23\times \frac{18253^{1825}}{2^{1824}\times 25^{1824}\times 365^{1825}}\) - step11: Reduce the numbers: \(23\times \frac{18253^{1825}}{2^{1821}\times 25^{1824}\times 365^{1825}}\) - step12: Multiply the fractions: \(\frac{23\times 18253^{1825}}{2^{1821}\times 25^{1824}\times 365^{1825}}\) Now, let's summarize the results for each compounding method: ### (a) Annual Compounding \[ A \approx 12311.68 \] ### (b) Semiannual Compounding \[ A \approx 12364.03 \] ### (c) Monthly Compounding \[ A \approx 12409.42 \] ### (d) Daily Compounding \[ A \approx 12418.39 \] Thus, the values of the investment at the end of 5 years for each compounding method are: - (a) Annual: \( \$12311.68 \) - (b) Semiannual: \( \$12364.03 \) - (c) Monthly: \( \$12409.42 \) - (d) Daily: \( \$12418.39 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To calculate the future value of an investment based on different compounding methods, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested for. Given: - \( P = 9200 \) - \( r = 0.06 \) - \( t = 5 \) Now, we can calculate for each compounding method: (a) **Annual**: - \( n = 1 \) \[ A = 9200 \left(1 + \frac{0.06}{1}\right)^{1 \cdot 5} = 9200 \left(1.06\right)^{5} \approx 9200 \times 1.338226 = 12318.66 \] So, the value for annual compounding is **$12,318.66**. (b) **Semiannual**: - \( n = 2 \) \[ A = 9200 \left(1 + \frac{0.06}{2}\right)^{2 \cdot 5} = 9200 \left(1.03\right)^{10} \approx 9200 \times 1.343916 = 12365.84 \] So, the value for semiannual compounding is **$12,365.84**. (c) **Monthly**: - \( n = 12 \) \[ A = 9200 \left(1 + \frac{0.06}{12}\right)^{12 \cdot 5} = 9200 \left(1.005\right)^{60} \approx 9200 \times 1.348850 = 12387.82 \] So, the value for monthly compounding is **$12,387.82**. (d) **Daily**: - \( n = 365 \) \[ A = 9200 \left(1 + \frac{0.06}{365}\right)^{365 \cdot 5} = 9200 \left(1.000164384\right)^{1825} \approx 9200 \times 1.349353 = 12397.21 \] So, the value for daily compounding is **$12,397.21**. To summarize: (a) Annual: \( \$ 12,318.66 \) (b) Semiannual: \( \$ 12,365.84 \) (c) Monthly: \( \$ 12,387.82 \) (d) Daily: \( \$ 12,397.21 \)

Related Questions

Latest Economics Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy