Responder
- (a) Annual: \$12,311.68
- (b) Semiannual: \$12,364.03
- (c) Monthly: \$12,409.42
- (d) Daily: \$12,418.39
Solución
To find the value of the investment at the end of 5 years for different compounding methods, we can use the formula for compound interest:
\[
A = P \left(1 + \frac{r}{n}\right)^{nt}
\]
where:
- \( A \) is the amount of money accumulated after n years, including interest.
- \( P \) is the principal amount (the initial amount of money).
- \( r \) is the annual interest rate (decimal).
- \( n \) is the number of times that interest is compounded per year.
- \( t \) is the number of years the money is invested or borrowed.
Given:
- \( P = 9200 \)
- \( r = 0.06 \)
- \( t = 5 \)
We will calculate \( A \) for each compounding method:
1. **Annual Compounding** (\( n = 1 \))
2. **Semiannual Compounding** (\( n = 2 \))
3. **Monthly Compounding** (\( n = 12 \))
4. **Daily Compounding** (\( n = 365 \))
Let's calculate each case step by step.
### (a) Annual Compounding
\[
A = 9200 \left(1 + \frac{0.06}{1}\right)^{1 \cdot 5}
\]
### (b) Semiannual Compounding
\[
A = 9200 \left(1 + \frac{0.06}{2}\right)^{2 \cdot 5}
\]
### (c) Monthly Compounding
\[
A = 9200 \left(1 + \frac{0.06}{12}\right)^{12 \cdot 5}
\]
### (d) Daily Compounding
\[
A = 9200 \left(1 + \frac{0.06}{365}\right)^{365 \cdot 5}
\]
Now, I will perform the calculations for each case.
Calculate the value by following steps:
- step0: Calculate:
\(9200\left(1+\frac{0.06}{1}\right)^{1\times 5}\)
- step1: Divide the terms:
\(9200\left(1+\frac{3}{50}\right)^{1\times 5}\)
- step2: Add the numbers:
\(9200\left(\frac{53}{50}\right)^{1\times 5}\)
- step3: Calculate:
\(9200\left(\frac{53}{50}\right)^{5}\)
- step4: Simplify:
\(9200\times \frac{53^{5}}{50^{5}}\)
- step5: Rewrite the expression:
\(50\times 184\times \frac{53^{5}}{50^{5}}\)
- step6: Reduce the numbers:
\(184\times \frac{53^{5}}{50^{4}}\)
- step7: Rewrite the expression:
\(8\times 23\times \frac{53^{5}}{50^{4}}\)
- step8: Rewrite the expression:
\(8\times 23\times \frac{53^{5}}{2^{4}\times 25^{4}}\)
- step9: Rewrite the expression:
\(2^{3}\times 23\times \frac{53^{5}}{2^{4}\times 25^{4}}\)
- step10: Reduce the numbers:
\(23\times \frac{53^{5}}{2\times 25^{4}}\)
- step11: Multiply the fractions:
\(\frac{23\times 53^{5}}{2\times 25^{4}}\)
Calculate or simplify the expression \( 9200 * (1 + 0.06/12)^(12*5) \).
Calculate the value by following steps:
- step0: Calculate:
\(9200\left(1+\frac{0.06}{12}\right)^{12\times 5}\)
- step1: Divide the terms:
\(9200\left(1+\frac{1}{200}\right)^{12\times 5}\)
- step2: Add the numbers:
\(9200\left(\frac{201}{200}\right)^{12\times 5}\)
- step3: Multiply the numbers:
\(9200\left(\frac{201}{200}\right)^{60}\)
- step4: Simplify:
\(9200\times \frac{201^{60}}{200^{60}}\)
- step5: Rewrite the expression:
\(200\times 46\times \frac{201^{60}}{200^{60}}\)
- step6: Reduce the numbers:
\(46\times \frac{201^{60}}{200^{59}}\)
- step7: Rewrite the expression:
\(2\times 23\times \frac{201^{60}}{200^{59}}\)
- step8: Rewrite the expression:
\(2\times 23\times \frac{201^{60}}{8^{59}\times 25^{59}}\)
- step9: Rewrite the expression:
\(2\times 23\times \frac{201^{60}}{2^{177}\times 25^{59}}\)
- step10: Reduce the numbers:
\(23\times \frac{201^{60}}{2^{176}\times 25^{59}}\)
- step11: Multiply the fractions:
\(\frac{23\times 201^{60}}{2^{176}\times 25^{59}}\)
Calculate or simplify the expression \( 9200 * (1 + 0.06/2)^(2*5) \).
Calculate the value by following steps:
- step0: Calculate:
\(9200\left(1+\frac{0.06}{2}\right)^{2\times 5}\)
- step1: Divide the terms:
\(9200\left(1+\frac{3}{100}\right)^{2\times 5}\)
- step2: Add the numbers:
\(9200\left(\frac{103}{100}\right)^{2\times 5}\)
- step3: Multiply the numbers:
\(9200\left(\frac{103}{100}\right)^{10}\)
- step4: Simplify:
\(9200\times \frac{103^{10}}{100^{10}}\)
- step5: Rewrite the expression:
\(100\times 92\times \frac{103^{10}}{100^{10}}\)
- step6: Reduce the numbers:
\(92\times \frac{103^{10}}{100^{9}}\)
- step7: Rewrite the expression:
\(4\times 23\times \frac{103^{10}}{100^{9}}\)
- step8: Rewrite the expression:
\(4\times 23\times \frac{103^{10}}{4^{9}\times 25^{9}}\)
- step9: Reduce the numbers:
\(23\times \frac{103^{10}}{4^{8}\times 25^{9}}\)
- step10: Multiply the fractions:
\(\frac{23\times 103^{10}}{4^{8}\times 25^{9}}\)
- step11: Evaluate the power:
\(\frac{23\times 103^{10}}{65536\times 25^{9}}\)
Calculate or simplify the expression \( 9200 * (1 + 0.06/365)^(365*5) \).
Calculate the value by following steps:
- step0: Calculate:
\(9200\left(1+\frac{0.06}{365}\right)^{365\times 5}\)
- step1: Divide the terms:
\(9200\left(1+\frac{3}{18250}\right)^{365\times 5}\)
- step2: Add the numbers:
\(9200\left(\frac{18253}{18250}\right)^{365\times 5}\)
- step3: Multiply the numbers:
\(9200\left(\frac{18253}{18250}\right)^{1825}\)
- step4: Simplify:
\(9200\times \frac{18253^{1825}}{18250^{1825}}\)
- step5: Rewrite the expression:
\(50\times 184\times \frac{18253^{1825}}{18250^{1825}}\)
- step6: Rewrite the expression:
\(50\times 184\times \frac{18253^{1825}}{50^{1825}\times 365^{1825}}\)
- step7: Reduce the numbers:
\(184\times \frac{18253^{1825}}{50^{1824}\times 365^{1825}}\)
- step8: Rewrite the expression:
\(8\times 23\times \frac{18253^{1825}}{50^{1824}\times 365^{1825}}\)
- step9: Rewrite the expression:
\(8\times 23\times \frac{18253^{1825}}{2^{1824}\times 25^{1824}\times 365^{1825}}\)
- step10: Rewrite the expression:
\(2^{3}\times 23\times \frac{18253^{1825}}{2^{1824}\times 25^{1824}\times 365^{1825}}\)
- step11: Reduce the numbers:
\(23\times \frac{18253^{1825}}{2^{1821}\times 25^{1824}\times 365^{1825}}\)
- step12: Multiply the fractions:
\(\frac{23\times 18253^{1825}}{2^{1821}\times 25^{1824}\times 365^{1825}}\)
Now, let's summarize the results for each compounding method:
### (a) Annual Compounding
\[
A \approx 12311.68
\]
### (b) Semiannual Compounding
\[
A \approx 12364.03
\]
### (c) Monthly Compounding
\[
A \approx 12409.42
\]
### (d) Daily Compounding
\[
A \approx 12418.39
\]
Thus, the values of the investment at the end of 5 years for each compounding method are:
- (a) Annual: \( \$12311.68 \)
- (b) Semiannual: \( \$12364.03 \)
- (c) Monthly: \( \$12409.42 \)
- (d) Daily: \( \$12418.39 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución