Question
upstudy study bank question image url

\( \left. \begin{array} { l } { \overline { A B } = 16 m } \\ { \overline { C H } = 9 m } \\ { A _ { A B C } = ? } \end{array} \right. \)

Ask by Clark Salinas. in Italy
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

L'area del triangolo \( ABC \) è \( 72 \, m^2 \).

Solution

Per calcolare l'area del triangolo \( ABC \), utilizziamo la formula dell'area di un triangolo: \[ \text{Area} = \frac{\text{Base} \times \text{Altezza}}{2} \] Dove: - La base \( \overline{AB} = 16 \, m \) - L'altezza \( \overline{CH} = 9 \, m \) Sostituendo i valori nella formula: \[ \text{Area} = \frac{16 \, m \times 9 \, m}{2} = \frac{144 \, m^2}{2} = 72 \, m^2 \] **Quindi, l'area del triangolo \( ABC \) è \( 72 \, m^2 \).**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To find the area of triangle \( ABC \), we can use the formula for the area \( A \) of a triangle given by the base and height: \[ A = \frac{1}{2} \times \text{base} \times \text{height} \] In this case, we can consider \( \overline{AB} \) as the base, which is 16 m, and \( \overline{CH} \) as the height, which is 9 m. Now, plug the values into the formula: \[ A = \frac{1}{2} \times 16 \, m \times 9 \, m = \frac{1}{2} \times 144 \, m^2 = 72 \, m^2 \] Thus, the area of triangle \( ABC \) is \( 72 \, m^2 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy