Question
\( \left. \begin{array} { l } { \overline { A B } = 16 m } \\ { \overline { C H } = 9 m } \\ { A _ { A B C } = ? } \end{array} \right. \)
Ask by Clark Salinas. in Italy
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
L'area del triangolo \( ABC \) è \( 72 \, m^2 \).
Solution
Per calcolare l'area del triangolo \( ABC \), utilizziamo la formula dell'area di un triangolo:
\[
\text{Area} = \frac{\text{Base} \times \text{Altezza}}{2}
\]
Dove:
- La base \( \overline{AB} = 16 \, m \)
- L'altezza \( \overline{CH} = 9 \, m \)
Sostituendo i valori nella formula:
\[
\text{Area} = \frac{16 \, m \times 9 \, m}{2} = \frac{144 \, m^2}{2} = 72 \, m^2
\]
**Quindi, l'area del triangolo \( ABC \) è \( 72 \, m^2 \).**
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
To find the area of triangle \( ABC \), we can use the formula for the area \( A \) of a triangle given by the base and height: \[ A = \frac{1}{2} \times \text{base} \times \text{height} \] In this case, we can consider \( \overline{AB} \) as the base, which is 16 m, and \( \overline{CH} \) as the height, which is 9 m. Now, plug the values into the formula: \[ A = \frac{1}{2} \times 16 \, m \times 9 \, m = \frac{1}{2} \times 144 \, m^2 = 72 \, m^2 \] Thus, the area of triangle \( ABC \) is \( 72 \, m^2 \).