Question
upstudy study bank question image url

Hence calculate the value of \( \tan 75^{\circ} \) without using a calcul

Ask by Bond Dunn. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \tan 75^{\circ} = 2 + \sqrt{3} \)

Solution

To calculate \( \tan 75^{\circ} \) without using a calculator, we can use the **tangent addition formula**. Here's a step-by-step breakdown: ### Step 1: Express \( 75^{\circ} \) as the Sum of Two Known Angles We can write: \[ 75^{\circ} = 45^{\circ} + 30^{\circ} \] ### Step 2: Apply the Tangent Addition Formula The tangent addition formula is: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Applying this to \( 45^{\circ} \) and \( 30^{\circ} \): \[ \tan(75^{\circ}) = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}} \] ### Step 3: Substitute Known Tangent Values We know: \[ \tan 45^{\circ} = 1 \] \[ \tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \] Substituting these values in: \[ \tan(75^{\circ}) = \frac{1 + \frac{\sqrt{3}}{3}}{1 - 1 \cdot \frac{\sqrt{3}}{3}} \] ### Step 4: Simplify the Expression First, simplify the numerator and denominator: \[ \text{Numerator} = 1 + \frac{\sqrt{3}}{3} = \frac{3 + \sqrt{3}}{3} \] \[ \text{Denominator} = 1 - \frac{\sqrt{3}}{3} = \frac{3 - \sqrt{3}}{3} \] So, \[ \tan(75^{\circ}) = \frac{\frac{3 + \sqrt{3}}{3}}{\frac{3 - \sqrt{3}}{3}} = \frac{3 + \sqrt{3}}{3 - \sqrt{3}} \] ### Step 5: Rationalize the Denominator Multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{3 + \sqrt{3}}{3 - \sqrt{3}} \times \frac{3 + \sqrt{3}}{3 + \sqrt{3}} = \frac{(3 + \sqrt{3})^2}{3^2 - (\sqrt{3})^2} \] Calculate the squares: \[ (3 + \sqrt{3})^2 = 9 + 6\sqrt{3} + 3 = 12 + 6\sqrt{3} \] \[ 3^2 - (\sqrt{3})^2 = 9 - 3 = 6 \] So, \[ \tan(75^{\circ}) = \frac{12 + 6\sqrt{3}}{6} = 2 + \sqrt{3} \] ### Final Answer \[ \boxed{2 + \sqrt{3}} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To calculate \( \tan 75^{\circ} \), we can utilize the angle sum identity. Notably, \( 75^{\circ} \) can be expressed as \( 45^{\circ} + 30^{\circ} \). According to the formula for \( \tan(a + b) \): \[ \tan(75^{\circ}) = \tan(45^{\circ} + 30^{\circ}) = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}} \] Given that \( \tan 45^{\circ} = 1 \) and \( \tan 30^{\circ} = \frac{1}{\sqrt{3}} \), we can substitute these values: \[ \tan(75^{\circ}) = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} \] Now, simplify the fractions. Both the numerator and denominator can be multiplied by \( \sqrt{3} \): \[ = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] To simplify further, multiply the numerator and denominator by the conjugate of the denominator: \[ \tan(75^{\circ}) = \frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{(\sqrt{3} + 1)^2}{3 - 1} = \frac{3 + 2\sqrt{3} + 1}{2} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] Therefore, the value of \( \tan 75^{\circ} \) is \( 2 + \sqrt{3} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy