Question
upstudy study bank question image url

2. \( \tan ^{2} \theta\left(\cot ^{2} \theta-\cos ^{2} \theta\right)= \)

Ask by Garrett Schofield. in the United Arab Emirates
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The simplified expression is \( \cos^{2}(\theta) \).

Solution

Calculate or simplify the expression \( \tan^{2}(\theta)(\cot^{2}(\theta)-\cos^{2}(\theta)) \). Simplify the expression by following steps: - step0: Solution: \(\tan^{2}\left(\theta \right)\left(\cot^{2}\left(\theta \right)-\cos^{2}\left(\theta \right)\right)\) - step1: Transform the expression: \(\tan^{2}\left(\theta \right)\left(\cot\left(\theta \right)+\cos\left(\theta \right)\right)\left(\cot\left(\theta \right)-\cos\left(\theta \right)\right)\) - step2: Transform the expression: \(\left(\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\right)^{2}\left(\cot\left(\theta \right)+\cos\left(\theta \right)\right)\left(\cot\left(\theta \right)-\cos\left(\theta \right)\right)\) - step3: Transform the expression: \(\left(\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\right)^{2}\times \frac{\cos\left(\theta \right)+\cos\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\times \left(\cot\left(\theta \right)-\cos\left(\theta \right)\right)\) - step4: Transform the expression: \(\left(\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}\right)^{2}\times \frac{\cos\left(\theta \right)+\cos\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\times \frac{\cos\left(\theta \right)-\cos\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\) - step5: Multiply the terms: \(\frac{\sin\left(\theta \right)\left(1+\sin\left(\theta \right)\right)}{\cos\left(\theta \right)}\times \frac{\cos\left(\theta \right)-\cos\left(\theta \right)\sin\left(\theta \right)}{\sin\left(\theta \right)}\) - step6: Reduce the fraction: \(\frac{1+\sin\left(\theta \right)}{\cos\left(\theta \right)}\times \left(\cos\left(\theta \right)-\cos\left(\theta \right)\sin\left(\theta \right)\right)\) - step7: Rewrite the expression: \(\frac{1+\sin\left(\theta \right)}{\cos\left(\theta \right)}\times \cos\left(\theta \right)\left(1-\sin\left(\theta \right)\right)\) - step8: Reduce the fraction: \(\left(1+\sin\left(\theta \right)\right)\left(1-\sin\left(\theta \right)\right)\) - step9: Transform the expression: \(1-\sin^{2}\left(\theta \right)\) - step10: Transform the expression: \(\cos^{2}\left(\theta \right)\) The simplified expression is \( \cos^{2}(\theta) \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To simplify the expression \( \tan ^{2} \theta\left(\cot ^{2} \theta-\cos ^{2} \theta\right) \), we start by substituting the definitions of tangent and cotangent in terms of sine and cosine: 1. Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) and \( \cot \theta = \frac{\cos \theta}{\sin \theta} \). Therefore, we have: \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \] \[ \cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} \] 2. Now, substitute these into the expression: \[ \tan^{2} \theta \left( \cot^{2} \theta - \cos^{2} \theta \right) = \frac{\sin^2 \theta}{\cos^2 \theta} \left( \frac{\cos^2 \theta}{\sin^2 \theta} - \cos^2 \theta \right) \] 3. Simplify the term inside the parentheses: \[ \frac{\cos^2 \theta}{\sin^2 \theta} - \cos^2 \theta = \frac{\cos^2 \theta - \cos^2 \theta \sin^2 \theta}{\sin^2 \theta} = \frac{\cos^2 \theta (1 - \sin^2 \theta)}{\sin^2 \theta} = \frac{\cos^2 \theta \cos^2 \theta}{\sin^2 \theta} = \frac{\cos^4 \theta}{\sin^2 \theta} \] 4. Substitute this back into the expression: \[ \frac{\sin^2 \theta}{\cos^2 \theta} \cdot \frac{\cos^4 \theta}{\sin^2 \theta} = \frac{\cos^4 \theta}{\cos^2 \theta} = \cos^2 \theta \] So, the final simplified result is: \[ \tan^{2} \theta\left(\cot^{2} \theta-\cos^{2} \theta\right) = \cos^2 \theta \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy