Find the exact value of the expression. Do not use a calculator. \( \tan 76^{\circ}-\frac{\cos 14^{\circ}}{\cos 76^{\circ}} \) \( \tan 76^{\circ}-\frac{\cos 14^{\circ}}{\cos 76^{\circ}}=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify the expression \( \tan 76^{\circ}-\frac{\cos 14^{\circ}}{\cos 76^{\circ}} \), we first note the trigonometric identity \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Therefore, \[ \tan 76^{\circ} = \frac{\sin 76^{\circ}}{\cos 76^{\circ}}. \] Now, substituting this into the expression, we have: \[ \tan 76^{\circ} - \frac{\cos 14^{\circ}}{\cos 76^{\circ}} = \frac{\sin 76^{\circ}}{\cos 76^{\circ}} - \frac{\cos 14^{\circ}}{\cos 76^{\circ}}. \] We can combine the two fractions since they have the same denominator: \[ = \frac{\sin 76^{\circ} - \cos 14^{\circ}}{\cos 76^{\circ}}. \] Next, let's use the co-function identity which tells us that \( \sin(90^{\circ} - \theta) = \cos \theta \). Here, we have: \[ \sin 76^{\circ} = \cos 14^{\circ}, \] because \( 76^{\circ} = 90^{\circ} - 14^{\circ} \). Thus, substituting this back in gives: \[ = \frac{\cos 14^{\circ} - \cos 14^{\circ}}{\cos 76^{\circ}} = \frac{0}{\cos 76^{\circ}} = 0. \] Hence, the exact value of the expression is: \[ \boxed{0}. \]