Question
upstudy study bank question image url

What is the inverse of A? \( \left[\begin{array}{ccc}1 & 3 & 1 \\ 2 & 7 & 4 \\ 1 & -1 & -5\end{array}\right] \)

Ask by Rowe Fleming. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The inverse of matrix \( A \) is \[ \begin{bmatrix} -\dfrac{31}{2} & 7 & \dfrac{5}{2} \\ 7 & -3 & -1 \\ -\dfrac{9}{2} & 2 & \dfrac{1}{2} \end{bmatrix} \]

Solution

To find the inverse of the matrix \[ A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 7 & 4 \\ 1 & -1 & -5 \end{bmatrix}, \] we can follow these steps: ### 1. Calculate the Determinant of \( A \) The determinant of a \( 3 \times 3 \) matrix \[ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \] is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg). \] For matrix \( A \): \[ \text{det}(A) = 1(7 \times (-5) - 4 \times (-1)) - 3(2 \times (-5) - 4 \times 1) + 1(2 \times (-1) - 7 \times 1) \] \[ = 1(-35 + 4) - 3(-10 - 4) + 1(-2 - 7) \] \[ = -31 + 42 - 9 = 2. \] Since \(\text{det}(A) \neq 0\), the inverse exists. ### 2. Find the Matrix of Minors Calculate the minor for each element by determining the determinant of the \( 2 \times 2 \) submatrix that remains after removing the row and column of that element. \[ \text{Minor}(A) = \begin{bmatrix} -31 & -14 & -9 \\ 14 & -6 & 4 \\ 5 & -2 & 1 \end{bmatrix}. \] ### 3. Apply Cofactors Apply the checkerboard pattern of signs to the matrix of minors to get the cofactor matrix: \[ \text{Cofactor}(A) = \begin{bmatrix} -31 & 14 & -9 \\ 14 & -6 & 4 \\ 5 & -2 & 1 \end{bmatrix}. \] ### 4. Transpose the Cofactor Matrix to Get the Adjugate \[ \text{Adj}(A) = \begin{bmatrix} -31 & 14 & 5 \\ 14 & -6 & -2 \\ -9 & 4 & 1 \end{bmatrix}. \] ### 5. Multiply by \( \frac{1}{\text{det}(A)} \) to Find the Inverse \[ A^{-1} = \frac{1}{2} \begin{bmatrix} -31 & 14 & 5 \\ 14 & -6 & -2 \\ -9 & 4 & 1 \end{bmatrix} = \begin{bmatrix} -\dfrac{31}{2} & 7 & \dfrac{5}{2} \\ 7 & -3 & -1 \\ -\dfrac{9}{2} & 2 & \dfrac{1}{2} \end{bmatrix}. \] ### Final Answer \[ A^{-1} = \begin{bmatrix} -\dfrac{31}{2} & 7 & \dfrac{5}{2} \\ 7 & -3 & -1 \\ -\dfrac{9}{2} & 2 & \dfrac{1}{2} \end{bmatrix} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the inverse of matrix \( A \), we first need to check if it’s invertible by calculating its determinant. If the determinant is non-zero, we can proceed to find the inverse. For the matrix: \[ A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 7 & 4 \\ 1 & -1 & -5 \end{bmatrix} \] Calculating the determinant using the rule for \(3 \times 3\) matrices, we find that it equals \(A_{11}(A_{22}A_{33}-A_{23}A_{32}) - A_{12}(A_{21}A_{33}-A_{23}A_{31}) + A_{13}(A_{21}A_{32}-A_{22}A_{31})\). After carrying out those calculations, you should find that the determinant is indeed \( -8 \) (non-zero), meaning the inverse exists. The inverse can then be calculated using the adjugate method or through row reduction. Calculating the adjugate and dividing each entry by the determinant gives us: \[ A^{-1} = \frac{1}{-8} \begin{bmatrix} -29 & -5 & 8 \\ -8 & -1 & 6 \\ 7 & 1 & -3 \end{bmatrix} = \begin{bmatrix} \frac{29}{8} & \frac{5}{8} & -1 \\ 1 & \frac{1}{8} & -\frac{3}{4} \\ -\frac{7}{8} & -\frac{1}{8} & \frac{3}{8} \end{bmatrix} \] Now you have the inverse of matrix \( A \)!

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy