Find the volume of the solid obtained by rotating the region bounded by the curves \( y = x^{2} \) and \( y = 4 \) about the line \( y = 5 \) using the washer method.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the volume of the solid obtained by rotating the region bounded by the curves \( y = x^{2} \) and \( y = 4 \) around the line \( y = 5 \), we will use the washer method. First, we need to determine the points of intersection between the curves \( y = x^2 \) and \( y = 4 \). Setting them equal gives: \[ x^2 = 4 \implies x = \pm 2. \] Thus, the region of integration is bounded by \( x = -2 \) and \( x = 2 \). Next, we identify the outer and inner radii of the washers. The outer radius \( R(x) \) is the distance from the line \( y = 5 \) to the curve \( y = 4 \): \[ R(x) = 5 - 4 = 1. \] The inner radius \( r(x) \) is the distance from the line \( y = 5 \) to the curve \( y = x^2 \): \[ r(x) = 5 - x^2. \] Using the washer method, we can express the volume \( V \) as: \[ V = \pi \int_{-2}^{2} \left[ R(x)^2 - r(x)^2 \right] \, dx = \pi \int_{-2}^{2} \left[ 1^2 - (5 - x^2)^2 \right] \, dx. \] Now we simplify the expression: \[ V = \pi \int_{-2}^{2} \left[ 1 - (5 - x^2)^2 \right] \, dx. \] Calculating \( (5 - x^2)^2 \): \[ (5 - x^2)^2 = 25 - 10x^2 + x^4. \] Thus, the integral becomes: \[ V = \pi \int_{-2}^{2} \left[ 1 - (25 - 10x^2 + x^4) \right] \, dx = \pi \int_{-2}^{2} \left[-24 + 10x^2 - x^4\right] \, dx. \] Now we break it down: \[ V = \pi \left[ \int_{-2}^{2} -24 \, dx + \int_{-2}^{2} 10x^2 \, dx - \int_{-2}^{2} x^4 \, dx \right]. \] Calculating each integral: 1. \(\int_{-2}^{2} -24 \, dx = -24 \times (2 - (-2)) = -24 \times 4 = -96\). 2. For \(\int_{-2}^{2} 10x^2 \, dx\): \[ = 10 \times \left[ \frac{x^3}{3} \right]_{-2}^{2} = 10 \times \left[\frac{2^3}{3} - \frac{(-2)^3}{3}\right] = 10 \times \left[\frac{8}{3} + \frac{8}{3}\right] = 10 \times \frac{16}{3} = \frac{160}{3}. \] 3. For \(\int_{-2}^{2} x^4 \, dx\): \[ = \left[ \frac{x^5}{5} \right]_{-2}^{2} = \frac{2^5}{5} - \frac{(-2)^5}{5} = \frac{32}{5} + \frac{32}{5} = \frac{64}{5}. \] Now substituting these back: \[ V = \pi \left( -96 + \frac{160}{3} - \frac{64}{5} \right). \] To combine these, we first find a common denominator (which is 15): \[ -96 = -\frac{1440}{15}, \quad \frac{160}{3} = \frac{800}{15}, \quad \frac{64}{5} = \frac{192}{15}. \] Thus: \[ V = \pi \left( -\frac{1440}{15} + \frac{800}{15} - \frac{192}{15} \right) = \pi \left( \frac{-1440 + 800 - 192}{15} \right) = \pi \left( \frac{-832}{15} \right) = -\frac{832\pi}{15