For the function \( f \), given below, find the antiderivative \( F \) that satisfies \( F(1)=2 \). \( f(x)=x^{3}-4 x^{-2}+3 \) The antiderivative that satisfies the given condition is \( F(x)=\square \).
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To find the antiderivative \( F(x) \), we start by integrating the function \( f(x) = x^3 - 4x^{-2} + 3 \). \[ F(x) = \int (x^3 - 4x^{-2} + 3) \, dx \] Integrating each term separately, we get: \[ F(x) = \frac{x^4}{4} - 4 \cdot \left(-\frac{1}{x}\right) + 3x + C = \frac{x^4}{4} + \frac{4}{x} + 3x + C \] Now we need to determine \( C \) such that \( F(1) = 2 \). \[ F(1) = \frac{1^4}{4} + \frac{4}{1} + 3 \cdot 1 + C = \frac{1}{4} + 4 + 3 + C \] \[ F(1) = \frac{1}{4} + 7 + C = \frac{29}{4} + C \] Setting \( F(1) = 2 \): \[ \frac{29}{4} + C = 2 \] \[ C = 2 - \frac{29}{4} = \frac{8}{4} - \frac{29}{4} = -\frac{21}{4} \] Thus, the antiderivative \( F(x) \) that satisfies \( F(1) = 2 \) is: \[ F(x) = \frac{x^4}{4} + \frac{4}{x} + 3x - \frac{21}{4} \] So we can conclude: The antiderivative that satisfies the given condition is \( F(x) = \frac{x^4}{4} + \frac{4}{x} + 3x - \frac{21}{4} \).