Question
upstudy study bank question image url

Find \( f+g, f-g \), fg and \( \frac{f}{g} \). Determine the domain for each function. \( f(x)=5 x+8, g(x)=x+6 \) \( (f+g)(x)=\square \) (Simplify your answer.)

Ask by Mitchell Spencer. in the United States
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( (f + g)(x) = 6x + 14 \)

Solution

Given the functions \( f(x) = 5x + 8 \) and \( g(x) = x + 6 \), let's find \( f + g \), \( f - g \), \( fg \), and \( \frac{f}{g} \), along with their respective domains. ### 1. Sum: \( (f + g)(x) \) \[ \begin{align*} (f + g)(x) &= f(x) + g(x) \\ &= (5x + 8) + (x + 6) \\ &= 5x + x + 8 + 6 \\ &= 6x + 14 \end{align*} \] **Domain:** All real numbers, \( \mathbb{R} \). --- ### 2. Difference: \( (f - g)(x) \) \[ \begin{align*} (f - g)(x) &= f(x) - g(x) \\ &= (5x + 8) - (x + 6) \\ &= 5x - x + 8 - 6 \\ &= 4x + 2 \end{align*} \] **Domain:** All real numbers, \( \mathbb{R} \). --- ### 3. Product: \( (fg)(x) \) \[ \begin{align*} (fg)(x) &= f(x) \cdot g(x) \\ &= (5x + 8)(x + 6) \\ &= 5x \cdot x + 5x \cdot 6 + 8 \cdot x + 8 \cdot 6 \\ &= 5x^2 + 30x + 8x + 48 \\ &= 5x^2 + 38x + 48 \end{align*} \] **Domain:** All real numbers, \( \mathbb{R} \). --- ### 4. Quotient: \( \left(\frac{f}{g}\right)(x) \) \[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{5x + 8}{x + 6} \] **Domain:** All real numbers except \( x = -6 \), since the denominator cannot be zero. \[ \text{Domain}: \quad x \in \mathbb{R} \setminus \{-6\} \] --- ### Summary - **Sum:** \( (f + g)(x) = 6x + 14 \)  **Domain:** \( \mathbb{R} \) - **Difference:** \( (f - g)(x) = 4x + 2 \)  **Domain:** \( \mathbb{R} \) - **Product:** \( (fg)(x) = 5x^2 + 38x + 48 \)  **Domain:** \( \mathbb{R} \) - **Quotient:** \( \frac{f}{g}(x) = \frac{5x + 8}{x + 6} \)  **Domain:** \( x \in \mathbb{R}, x \neq -6 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find \( f+g \), we simply add the two functions together: \[ (f+g)(x) = f(x) + g(x) = (5x + 8) + (x + 6) = 6x + 14. \] Next, for \( f-g \), we subtract \( g(x) \) from \( f(x) \): \[ (f-g)(x) = f(x) - g(x) = (5x + 8) - (x + 6) = 4x + 2. \] For \( fg \), we multiply the two functions: \[ fg(x) = f(x) \cdot g(x) = (5x + 8)(x + 6) = 5x^2 + 30x + 8x + 48 = 5x^2 + 38x + 48. \] Finally, for \( \frac{f}{g} \): \[ \frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{5x + 8}{x + 6}. \] The function \( \frac{f}{g} \) is defined for all \( x \) except where \( g(x) = 0 \), so the domain excludes \( x = -6 \). To summarize: \[ (f+g)(x) = 6x + 14, \quad (f-g)(x) = 4x + 2, \quad fg(x) = 5x^2 + 38x + 48, \quad \frac{f}{g}(x) = \frac{5x + 8}{x + 6}, \text{ with } x \neq -6 \text{ for the domain.} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy