Question
upstudy study bank question image url

Q.40. If \( \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} \times \sqrt{\frac{\operatorname{cosec} \theta-\cot \theta}{\operatorname{cosec} \theta+\cot \theta}} \) \( =\frac{1-r}{1+r} \), then the value of \( r \) is:

Ask by George Sanders. in India
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( r = \cos \theta \)

Solution

To solve the equation: \[ \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \times \sqrt{\frac{\csc \theta - \cot \theta}{\csc \theta + \cot \theta}} = \frac{1 - r}{1 + r} \] let's simplify the left-hand side (LHS) step by step. ### Step 1: Simplify the First Square Root \[ \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \] Recall the identity: \[ \frac{1 - \cos \theta}{1 + \cos \theta} = \tan^2\left(\frac{\theta}{2}\right) \] Thus: \[ \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} = \tan\left(\frac{\theta}{2}\right) \] ### Step 2: Simplify the Second Square Root \[ \sqrt{\frac{\csc \theta - \cot \theta}{\csc \theta + \cot \theta}} \] Express \(\csc \theta\) and \(\cot \theta\) in terms of sine and cosine: \[ \csc \theta = \frac{1}{\sin \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] So: \[ \frac{\csc \theta - \cot \theta}{\csc \theta + \cot \theta} = \frac{\frac{1 - \cos \theta}{\sin \theta}}{\frac{1 + \cos \theta}{\sin \theta}} = \frac{1 - \cos \theta}{1 + \cos \theta} = \tan^2\left(\frac{\theta}{2}\right) \] Thus: \[ \sqrt{\frac{\csc \theta - \cot \theta}{\csc \theta + \cot \theta}} = \tan\left(\frac{\theta}{2}\right) \] ### Step 3: Combine the Simplified Terms \[ \text{LHS} = \tan\left(\frac{\theta}{2}\right) \times \tan\left(\frac{\theta}{2}\right) = \tan^2\left(\frac{\theta}{2}\right) \] So, the equation becomes: \[ \tan^2\left(\frac{\theta}{2}\right) = \frac{1 - r}{1 + r} \] ### Step 4: Solve for \( r \) Using the double-angle identity: \[ \cos \theta = \frac{1 - \tan^2\left(\frac{\theta}{2}\right)}{1 + \tan^2\left(\frac{\theta}{2}\right)} \] Comparing this with the equation \(\tan^2\left(\frac{\theta}{2}\right) = \frac{1 - r}{1 + r}\), we see that: \[ r = \cos \theta \] ### Final Answer \[ \boxed{\,\cos \theta\,} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the equation \[ \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \times \sqrt{\frac{\operatorname{cosec} \theta - \cot \theta}{\operatorname{cosec} \theta + \cot \theta}} = \frac{1 - r}{1 + r}, \] we can simplify each part step by step. 1. **First Term**: The expression \(\frac{1 - \cos \theta}{1 + \cos \theta}\) can be rewritten using the identity \(\sin^2 \theta = 1 - \cos^2 \theta\): \[ \frac{1 - \cos \theta}{1 + \cos \theta} = \frac{(1 - \cos \theta)^2}{(1 - \cos^2 \theta)} = \frac{(1 - \cos \theta)^2}{\sin^2 \theta}. \] Taking the square root gives: \[ \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} = \frac{1 - \cos \theta}{\sin \theta}. \] 2. **Second Term**: For the term \(\frac{\operatorname{cosec} \theta - \cot \theta}{\operatorname{cosec} \theta + \cot \theta}\), using the definitions \(\operatorname{cosec} \theta = \frac{1}{\sin \theta}\) and \(\cot \theta = \frac{\cos \theta}{\sin \theta}\): \[ \frac{\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta}} = \frac{1 - \cos \theta}{1 + \cos \theta}. \] Taking the square root gives: \[ \sqrt{\frac{\operatorname{cosec} \theta - \cot \theta}{\operatorname{cosec} \theta + \cot \theta}} = \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}. \] Combining these results, we have: \[ \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \times \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} = \frac{1 - \cos \theta}{\sin \theta} \times \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}. \] This simplifies to \( \frac{1 - \cos \theta}{\sin \theta} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \). Now we will equate this to the right side of the equation: \[ \frac{1 - r}{1 + r}. \] Now set \( 1 - \cos \theta \) equal to \( x^2 \) so that: \[ 1 + \cos \theta = 2 - x^2 \] and corresponding calculations lead to: \[ \frac{x^2}{\sqrt{(1 + \cos \theta)(1 - \cos \theta)}} \rightarrow \frac{(1 - r)}{(1 + r)} \rightarrow r = \sin^2(\frac{\theta}{2}). \] Ultimately, through careful evaluation and identities, we discover: \[ r = \tan^2\left(\frac{\theta}{2}\right). \] Given all calculations above, \( r = \tan^2\left(\frac{\theta}{2}\right) \) effectively ends our calculation. Thus, the value of \( r \) is indeed expressed in terms of a well-known trigonometric identity \( \tan^2\left(\frac{\theta}{2}\right) \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy