Q.39. If \( \sec \theta=4 x \) and \( \tan \theta=\frac{4}{x},(x \neq 0) \) then the value of \( 8\left(x^{2}-\frac{1}{x^{2}}\right) \) is : SSC CHSL \( 05 / 07 / 2019 \) (Afternoon)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To solve the problem, we start with the definitions of secant and tangent. Given that \( \sec \theta = 4x \) and \( \tan \theta = \frac{4}{x} \), we can use the identity \( \sec^2 \theta = 1 + \tan^2 \theta \). 1. We know: \[ \sec^2 \theta = (4x)^2 = 16x^2 \] \[ \tan^2 \theta = \left(\frac{4}{x}\right)^2 = \frac{16}{x^2} \] 2. Using the identity: \[ 16x^2 = 1 + \frac{16}{x^2} \] 3. Multiply both sides by \( x^2 \) to eliminate the fraction: \[ 16x^4 = x^2 + 16 \] Rearranging gives: \[ 16x^4 - x^2 - 16 = 0 \] Letting \( y = x^2 \), we can rewrite this as: \[ 16y^2 - y - 16 = 0 \] 4. Next, we solve for \( y \) using the quadratic formula: \[ y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 16 \cdot (-16)}}{2 \cdot 16} = \frac{1 \pm \sqrt{1 + 1024}}{32} = \frac{1 \pm 32}{32} \] This gives us: \[ y_1 = 1 \quad \text{and} \quad y_2 = -\frac{31}{32} \quad (\text{discarded, } y \geq 0) \] 5. Therefore, \( x^2 = 1 \). Now, we need to find \( 8(x^2 - \frac{1}{x^2}) \): \[ 8\left(x^2 - \frac{1}{x^2}\right) = 8\left(1 - \frac{1}{1}\right) = 8(0) = 0 \] So the final answer is: \[ \boxed{0} \]