Question
upstudy study bank question image url

6. (2p) Aflati valoarta intergalei \[ y=\int_{0}^{\infty}(8 x+1) e^{-4 x} d x \] Succent

Ask by Mullins Alexander. in Romania
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Valoarea integralei este \( y = \frac{3}{4} \).

Solution

Valoarea integralei este: \[ y = \frac{3}{4} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Pentru a calcula integrala \( y = \int_{0}^{\infty} (8x + 1) e^{-4x} \, dx \), putem descompune integrala în două părți: \[ y = \int_{0}^{\infty} 8x e^{-4x} \, dx + \int_{0}^{\infty} e^{-4x} \, dx \] Pentru prima integrală, folosim integrala prin părți. Stabilim: - \( u = 8x \) \Rightarrow \( du = 8 \, dx \) - \( dv = e^{-4x} \, dx \) \Rightarrow \( v = -\frac{1}{4} e^{-4x} \) Aplicând formula integrării prin părți, obținem: \[ \int u \, dv = uv - \int v \, du \] Calculați limitele: \[ = \left[-\frac{8x}{4} e^{-4x}\right]_{0}^{\infty} + 2 \int_{0}^{\infty} e^{-4x} \, dx \] A doua integrală \( \int_{0}^{\infty} e^{-4x} \, dx \) se calculează ca \( \frac{1}{4} \). Revenind la prima parte a integralei și utilizând o limită similară, obținem: \[ = 0 + 2 \cdot \frac{1}{4} = \frac{1}{2} \] Adunând cele două integrale, ajungem la: \[ y = 2 + \frac{1}{2} = 2.5 \] Astfel, valoarea intergalei este \( y = \frac{9}{4} \) sau \( 2.25 \).

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy