Evaluate \( \int\left(2 x^{3}+1\right)^{7} x^{2} d x \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To evaluate the integral \( \int (2x^3 + 1)^7 x^2 \, dx \), we can use the method of substitution. Let's first set: \[ u = 2x^3 + 1 \] Now, we need to find \( du \). Differentiating \( u \) with respect to \( x \): \[ \frac{du}{dx} = 6x^2 \quad \Rightarrow \quad du = 6x^2 \, dx \quad \Rightarrow \quad dx = \frac{du}{6x^2} \] Next, we can express \( x^2 \, dx \) in terms of \( du \): \[ x^2 \, dx = \frac{1}{6} \, du \] Now, we substitute for \( u \) and \( x^2 \, dx \) in the integral: \[ \int (2x^3 + 1)^7 x^2 \, dx = \int u^7 \left(\frac{1}{6} du\right) = \frac{1}{6} \int u^7 \, du \] Next, we can evaluate \( \int u^7 \, du \): \[ \int u^7 \, du = \frac{u^8}{8} + C \] Thus, substituting back into our integral, we have: \[ \frac{1}{6} \cdot \frac{u^8}{8} + C = \frac{1}{48} u^8 + C \] Finally, substituting \( u = 2x^3 + 1 \) back in, we get: \[ \frac{1}{48} (2x^3 + 1)^8 + C \] Therefore, the value of the integral is: \[ \int (2x^3 + 1)^7 x^2 \, dx = \frac{1}{48} (2x^3 + 1)^8 + C \]