Question
upstudy study bank question image url

Evaluate \( \int\left(2 x^{3}+1\right)^{7} x^{2} d x \)

Ask by Smith Bond. in Kenya
Dec 09,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \frac{(2x^{3}+1)^{8}}{48} + C \)

Solution

Calculate the integral \( \int\left(2 x^{3}+1\right)^{7} x^{2} dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \left(2x^{3}+1\right)^{7}x^{2} dx\) - step1: Use the substitution \(dx=\frac{1}{6x^{2}} dt\) to transform the integral\(:\) \(\int \left(2x^{3}+1\right)^{7}x^{2}\times \frac{1}{6x^{2}} dt\) - step2: Simplify: \(\int \frac{\left(2x^{3}+1\right)^{7}}{6} dt\) - step3: Use the substitution \(t=2x^{3}\) to transform the integral\(:\) \(\int \frac{\left(t+1\right)^{7}}{6} dt\) - step4: Use properties of integrals: \(\frac{1}{6}\times \int \left(t+1\right)^{7} dt\) - step5: Use the substitution \(dt=1 dv\) to transform the integral\(:\) \(\frac{1}{6}\times \int \left(t+1\right)^{7}\times 1 dv\) - step6: Simplify: \(\frac{1}{6}\times \int \left(t+1\right)^{7} dv\) - step7: Use the substitution \(v=t+1\) to transform the integral\(:\) \(\frac{1}{6}\times \int v^{7} dv\) - step8: Evaluate the integral: \(\frac{1}{6}\times \frac{v^{7+1}}{7+1}\) - step9: Simplify: \(\frac{1}{6}\times \frac{v^{8}}{8}\) - step10: Multiply the terms: \(\frac{v^{8}}{6\times 8}\) - step11: Multiply the terms: \(\frac{v^{8}}{48}\) - step12: Substitute back: \(\frac{\left(t+1\right)^{8}}{48}\) - step13: Substitute back: \(\frac{\left(2x^{3}+1\right)^{8}}{48}\) - step14: Add the constant of integral C: \(\frac{\left(2x^{3}+1\right)^{8}}{48} + C, C \in \mathbb{R}\) The result of the integral \( \int\left(2 x^{3}+1\right)^{7} x^{2} dx \) is \( \frac{(2x^{3}+1)^{8}}{48} + C \), where \( C \) is an arbitrary constant.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate the integral \( \int (2x^3 + 1)^7 x^2 \, dx \), we can use the method of substitution. Let's first set: \[ u = 2x^3 + 1 \] Now, we need to find \( du \). Differentiating \( u \) with respect to \( x \): \[ \frac{du}{dx} = 6x^2 \quad \Rightarrow \quad du = 6x^2 \, dx \quad \Rightarrow \quad dx = \frac{du}{6x^2} \] Next, we can express \( x^2 \, dx \) in terms of \( du \): \[ x^2 \, dx = \frac{1}{6} \, du \] Now, we substitute for \( u \) and \( x^2 \, dx \) in the integral: \[ \int (2x^3 + 1)^7 x^2 \, dx = \int u^7 \left(\frac{1}{6} du\right) = \frac{1}{6} \int u^7 \, du \] Next, we can evaluate \( \int u^7 \, du \): \[ \int u^7 \, du = \frac{u^8}{8} + C \] Thus, substituting back into our integral, we have: \[ \frac{1}{6} \cdot \frac{u^8}{8} + C = \frac{1}{48} u^8 + C \] Finally, substituting \( u = 2x^3 + 1 \) back in, we get: \[ \frac{1}{48} (2x^3 + 1)^8 + C \] Therefore, the value of the integral is: \[ \int (2x^3 + 1)^7 x^2 \, dx = \frac{1}{48} (2x^3 + 1)^8 + C \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy