(1) \( x-3 x^{\frac{1}{2}}+2=0 \) (3) \( x^{\frac{1}{2}}+3 x^{\frac{1}{4}}-10=0 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
The first equation \( x - 3x^{\frac{1}{2}} + 2 = 0 \) can be transformed into a quadratic form by letting \( y = x^{\frac{1}{2}} \). This means rewriting the equation as \( y^2 - 3y + 2 = 0 \). Factoring gives us \( (y-1)(y-2)=0 \), leading to \( y=1 \) or \( y=2 \), which corresponds to \( x=1 \) or \( x=4 \) when squaring back. For the second equation \( x^{\frac{1}{2}} + 3x^{\frac{1}{4}} - 10 = 0 \), similar substitution works wonders! Letting \( z = x^{\frac{1}{4}} \) transforms it into \( z^2 + 3z - 10 = 0 \). Factoring or using the quadratic formula will yield the possible values of \( z \), which are then squared to get back to \( x \). Now you’ve got solutions, and you might just impress your friends on how well you handle square roots and quadratics!