Question
upstudy study bank question image url

A subjective test consists of two sections, A and B. Each question in Section A and Section B are allotted \( x \) marks and \( y \) marks respectively. Ali answered correctly 8 questions from Section A and 7 questions from Section B. Aiman answered correctly 9 questions from Section A and 5 questions from Section B. Ali and Aiman scored 59 marks and 52 marks respectively. Using the matrix method, calculate the values of \( x \) and \( y \).

Ask by Hobbs Chambers. in Malaysia
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Each question in Section A is worth 3 marks, and each question in Section B is worth 5 marks.

Solution

To determine the values of \( x \) and \( y \) using the **matrix method**, we'll follow these steps: 1. **Set Up the Equations** From the problem statement, we can form the following system of linear equations based on the scores of Ali and Aiman: \[ \begin{cases} 8x + 7y = 59 & \text{(Ali's score)} \\ 9x + 5y = 52 & \text{(Aiman's score)} \end{cases} \] 2. **Represent the System in Matrix Form** The system can be written as: \[ \begin{bmatrix} 8 & 7 \\ 9 & 5 \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} 59 \\ 52 \\ \end{bmatrix} \] Let's denote: \[ \mathbf{A} = \begin{bmatrix} 8 & 7 \\ 9 & 5 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] So, the matrix equation is: \[ \mathbf{A} \mathbf{X} = \mathbf{B} \] 3. **Find the Inverse of Matrix \( \mathbf{A} \)** First, compute the determinant of \( \mathbf{A} \): \[ \text{det}(\mathbf{A}) = (8)(5) - (9)(7) = 40 - 63 = -23 \] Since the determinant is not zero, \( \mathbf{A} \) is invertible. The inverse of \( \mathbf{A} \) is: \[ \mathbf{A}^{-1} = \frac{1}{\text{det}(\mathbf{A})} \begin{bmatrix} 5 & -7 \\ -9 & 8 \\ \end{bmatrix} = \frac{1}{-23} \begin{bmatrix} 5 & -7 \\ -9 & 8 \\ \end{bmatrix} \] 4. **Multiply Both Sides by \( \mathbf{A}^{-1} \)** To solve for \( \mathbf{X} \): \[ \mathbf{X} = \mathbf{A}^{-1} \mathbf{B} \] Let's compute this multiplication: \[ \mathbf{X} = \frac{1}{-23} \begin{bmatrix} 5 & -7 \\ -9 & 8 \\ \end{bmatrix} \begin{bmatrix} 59 \\ 52 \\ \end{bmatrix} \] 5. **Calculate the Products** - **For \( x \):** \[ x = \frac{1}{-23} \left(5 \times 59 + (-7) \times 52\right) = \frac{1}{-23} \left(295 - 364\right) = \frac{1}{-23} \times (-69) = 3 \] - **For \( y \):** \[ y = \frac{1}{-23} \left((-9) \times 59 + 8 \times 52\right) = \frac{1}{-23} \left(-531 + 416\right) = \frac{1}{-23} \times (-115) = 5 \] 6. **Solution** \[ x = 3 \quad \text{and} \quad y = 5 \] **Therefore, each question in Section A is worth 3 marks, and each question in Section B is worth 5 marks.**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve for \( x \) and \( y \) using the matrix method based on the information given, we can set up a system of equations derived from the scores of Ali and Aiman. From the problem, we gather the following information: 1. For Ali: \[ 8x + 7y = 59 \quad \text{(Eq. 1)} \] 2. For Aiman: \[ 9x + 5y = 52 \quad \text{(Eq. 2)} \] Now we can express this system in matrix form: \[ \begin{bmatrix} 8 & 7 \\ 9 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] To solve this system using the inverse of the matrix, let's denote the coefficient matrix as \( A \) and the constant matrix as \( B \): \[ A = \begin{bmatrix} 8 & 7 \\ 9 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] Next, we find the inverse of matrix \( A \): The determinant of \( A \) is calculated as: \[ \text{det}(A) = (8)(5) - (7)(9) = 40 - 63 = -23 \] The inverse \( A^{-1} \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{-23} \begin{bmatrix} 5 & -7 \\ -9 & 8 \end{bmatrix} \] Now, we compute: \[ A^{-1} = \begin{bmatrix} \frac{5}{-23} & \frac{-7}{-23} \\ \frac{-9}{-23} & \frac{8}{-23} \end{bmatrix} = \begin{bmatrix} -\frac{5}{23} & \frac{7}{23} \\ \frac{9}{23} & -\frac{8}{23} \end{bmatrix} \] To find \( \begin{bmatrix} x \\ y \end{bmatrix} \), we multiply \( A^{-1} \) with \( B \): \[ \begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} B = \begin{bmatrix} -\frac{5}{23} & \frac{7}{23} \\ \frac{9}{23} & -\frac{8}{23} \end{bmatrix} \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] Calculating this gives: \[ x = -\frac{5}{23}(59) + \frac{7}{23}(52) = -\frac{295}{23} + \frac{364}{23} = \frac{69}{23} = 3 \] \[ y = \frac{9}{23}(59) - \frac{8}{23}(52) = \frac{531}{23} - \frac{416}{23} = \frac{115}{23} = 5 \] Thus, the values are \( x = 3 \) and \( y = 5 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy