A subjective test consists of two sections, A and B. Each question in Section A and Section B are allotted \( x \) marks and \( y \) marks respectively. Ali answered correctly 8 questions from Section A and 7 questions from Section B. Aiman answered correctly 9 questions from Section A and 5 questions from Section B. Ali and Aiman scored 59 marks and 52 marks respectively. Using the matrix method, calculate the values of \( x \) and \( y \).
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To solve for \( x \) and \( y \) using the matrix method based on the information given, we can set up a system of equations derived from the scores of Ali and Aiman. From the problem, we gather the following information: 1. For Ali: \[ 8x + 7y = 59 \quad \text{(Eq. 1)} \] 2. For Aiman: \[ 9x + 5y = 52 \quad \text{(Eq. 2)} \] Now we can express this system in matrix form: \[ \begin{bmatrix} 8 & 7 \\ 9 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] To solve this system using the inverse of the matrix, let's denote the coefficient matrix as \( A \) and the constant matrix as \( B \): \[ A = \begin{bmatrix} 8 & 7 \\ 9 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] Next, we find the inverse of matrix \( A \): The determinant of \( A \) is calculated as: \[ \text{det}(A) = (8)(5) - (7)(9) = 40 - 63 = -23 \] The inverse \( A^{-1} \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{-23} \begin{bmatrix} 5 & -7 \\ -9 & 8 \end{bmatrix} \] Now, we compute: \[ A^{-1} = \begin{bmatrix} \frac{5}{-23} & \frac{-7}{-23} \\ \frac{-9}{-23} & \frac{8}{-23} \end{bmatrix} = \begin{bmatrix} -\frac{5}{23} & \frac{7}{23} \\ \frac{9}{23} & -\frac{8}{23} \end{bmatrix} \] To find \( \begin{bmatrix} x \\ y \end{bmatrix} \), we multiply \( A^{-1} \) with \( B \): \[ \begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} B = \begin{bmatrix} -\frac{5}{23} & \frac{7}{23} \\ \frac{9}{23} & -\frac{8}{23} \end{bmatrix} \begin{bmatrix} 59 \\ 52 \end{bmatrix} \] Calculating this gives: \[ x = -\frac{5}{23}(59) + \frac{7}{23}(52) = -\frac{295}{23} + \frac{364}{23} = \frac{69}{23} = 3 \] \[ y = \frac{9}{23}(59) - \frac{8}{23}(52) = \frac{531}{23} - \frac{416}{23} = \frac{115}{23} = 5 \] Thus, the values are \( x = 3 \) and \( y = 5 \).