Pritchard Sullivan
11/29/2023 · High School
19. Стрелок ведет стрельбу по мишени до первого попадания, имея боезапас 4 патрона. Вероятность попадания при каждом выстреле равна 0,6 . Построить закон распределения случайной величины - числа использованных патронов. Найти математическое ожидание, дисперсию. Записать функцию распределения
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
Закон распределения случайной величины \( X \) (числа использованных патронов) до первого попадания:
\[
\begin{align*}
P(X = 1) & = 0.6 \\
P(X = 2) & = 0.24 \\
P(X = 3) & = 0.096 \\
P(X = 4) & = 0.0384 \\
\end{align*}
\]
Математическое ожидание \( E(X) \approx 1.5216 \)
Дисперсия \( D(X) \approx 0.2612 \)
Функция распределения:
\[
F(x) =
\begin{cases}
0 & \text{если } x < 1 \\
0.6 & \text{если } 1 \leq x < 2 \\
0.84 & \text{если } 2 \leq x < 3 \\
0.936 & \text{если } 3 \leq x < 4 \\
1 & \text{если } x \geq 4
\end{cases}
\]
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit