Chen Mckenzie
05/18/2024 · High School
Suites arithmétiques Les questions sont indépendantes. 1. On définit pour tout \( n \) la suite \( \left(U_{n}\right) \) par : \[ U_{n}=3 n-2 \] Montrer que \( \left(U_{n}\right) \) est une suite arithmétique. 2. Soit \( \left(U_{n}\right) \) une suite arithmétique de premier terme \( U_{0}=5 \) et de raison \( \frac{1}{3} \). Calculer le \( 9^{\text {ieme terme, puis calculer la }} \) somme : \( S=U_{0}+U_{1}+U_{2}+\ldots+U_{8} \)
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
### السؤال الأول:
نثبت أن المتتابعة \( U_n = 3n - 2 \) هي متتابعة حسابية. نحسب الفرق بين الحدين المتتاليين:
\[
U_{n+1} - U_n = 3
\]
لذا، المتتابعة حسابية مع فرق مشترك 3.
### السؤال الثاني:
1. الحد التاسع \( U_9 = 8 \).
2. مجموع التسعة حدود الأولى \( S = 57 \).
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit