Q:
It is given that \( \sin x \sin y=\frac{1}{12} \) and \( \cos x \cos y=\frac{3}{4} \)
(i) Find the value of \( \cos (x+y) \) and of \( \cos (x-y) \)
(ii) Hence, find the acute angles \( x \) and \( y \).
Q:
Simplifique la expresión considerando
\( \arctan (\mathrm{a}) \neq 0 \).
\( \mathrm{H}=\frac{\operatorname{arcsen}\left(\frac{2 \mathrm{a}}{1+\mathrm{a}^{2}}\right)+2 \arccos \left(\frac{1-\mathrm{a}^{2}}{1+\mathrm{a}^{2}}\right)}{\arctan [\operatorname{arccot}(\tan (2 \mathrm{a}))-\operatorname{arccot}(\tan (3 \mathrm{a}))]} \)
Q:
Si \( \operatorname{tg}(x)+\operatorname{ctg}(x)=5 / 2 M= \)
\( [\operatorname{sen}(45+x)] /[\operatorname{sen}(135+x)] \) calcule \( M^{2} \)
Q:
59. \( y=\cos (2 x-1) \cdot \tan (1-2 x) \)
Q:
\( \sin x - \cos ( - x ) = \frac { \sqrt { 2 } } { 2 } \)
Q:
Determine para qué valores de \( x \in(0,2 \pi) \) *
se cumple:
\( \left\lvert\, \frac{\cot ^{2}(x)+4}{2 \operatorname{sen}^{2}(x)+5 \operatorname{sen}(x)-3}>0\right. \)
Q:
Determine el número de soluciones reales *
de la ecuación \( |\operatorname{sen}(x)|=|\operatorname{Ln}| x-\pi| | \)
Tu respuesta
Q:
Use the sum or difference formula for sine to determine the exact value of \( \sin \left(\frac{17 \pi}{12}\right) \)
Q:
Determine para qué valores de \( x \in(0,2 \pi) \) se
\( \frac{\cot ^{2}(x)+4}{2 \operatorname{sen}^{2}(x)+5 \operatorname{sen}(x)-3}>0 \)
Q:
Sean \( x, y, z \) las medidas de los ángulos
interiores de un triángulo tales que:
\( \cot (x)+\cot (y)=-3 \tan (z) \cot (x) \cot (y) \).
Determine \( \tan (x) \) en función del ángulo " \( y \) ".
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit