Q:
4. \( \sec x-2=0 \)
6. \( \csc x+\sqrt{2}=0 \)
Q:
Para determinar la altura de un
paste, un obseivador eoloca a
36 m de su pie y ve al poste bajo
un angulo de \( 52^{\circ} 30 \) calcular
la altura del poste
Q:
Encuentra el valor del ángulo en grados,
redondea a centésimas, para cada valor
dado de la función trigonométrica:
a) \( \operatorname{sen} C=0.1478 \)
b) \( \tan B=0.4522 \)
c) \( \cos X=0.7880 \)
d) \( \cos A=0.1478 \)
e) \( \operatorname{sen} B=0.9775 \)
f) \( \tan \theta=1.349 \)
g) \( \operatorname{sen} Y=0.7788 \)
Q:
1 State the transformation which maps \( y=\sin x \) onto:
\( \begin{array}{lll}\text { a } y=\sin x-1 & \text { b } y=\sin \left(x-\frac{\pi}{4}\right) & \text { c } y=2 \sin x \\ \text { d } y=\sin 4 x & \text { e } y=\sin \frac{x}{4} & \text { f } y=\sin \left(x-\frac{\pi}{3}\right)+2\end{array} \)
Q:
\( 76 \sin ^ { 4 } x - \sin ^ { 4 } y \)
Q:
\( 16\sin (x)^{4}-\sin (y)^{4} \)
Q:
A boat heading out to sea starts out at Point \( A \), at a horizontal
distance of 1433 feet from a lighthouse/the shore. From that point,
the boat's crew measures the angle of elevation to the lighthouse's
beacon-light from that point to be \( 15^{\circ} \). At some later time, the crew
measures the angle of elevation from point \( B \) to be \( 6^{\circ} \). Find the
distance from point \( A \) to point \( B \). Round your answer to the nearest
tenth of a foot if necessary.
Q:
\( \left. \begin{array} { l l } { x + 30 ^ { \circ } } & { 2 x - 30 ^ { \circ } } \\ { } & { } \\ { 150 ^ { \circ } - x } & { 5 x } \\ \hline \end{array} \right. \)
Q:
3. Reduzca: \( B=\operatorname{sen} x \cdot \cos x \cdot \operatorname{tg} x \cdot \csc x \)
Q:
2. Reduzca: \( A=5 \operatorname{sen} x \cdot \csc x-2 \operatorname{tg} x \cdot \operatorname{ctg} x \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit